Genome-wide identification of CaARR-Bs transcription factor gene family in pepper and their expression patterns under salinity stress

被引:2
作者
Alshegaihi, Rana M. [1 ]
Alshamrani, Salha Mesfer [1 ]
机构
[1] Univ Jeddah, Coll Sci, Dept Biol, Jeddah, Saudi Arabia
来源
PEERJ | 2023年 / 11卷
关键词
Capsicum annuum; CaARRs-type B transcription factor; Gene structure; Phylogenetic analysis; Expression analysis; Salinity stress; CYTOKININ SIGNAL-TRANSDUCTION; RESPONSE REGULATORS ARR1; 2-COMPONENT SYSTEMS; PROVIDES INSIGHTS; ASP PHOSPHORELAY; ARABIDOPSIS; EVOLUTION; ROLES; DUPLICATION; DIVERGENCE;
D O I
10.7717/peerj.16332
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In plants, ARRs-B transcription factors play a crucial role in regulating cytokinin signal transduction, abiotic stress resistance, and plant development. A number of adverse environmental conditions have caused severe losses for the pepper (Capsicum annuum L.)-a significant and economically important vegetable. Among the transcription factors of the type B-ARRs family, multiple members have different functions. In pepper, only a few members of the ARRs-B family have been reported and characterized. The current study aimed to characterize ARRs-B transcription factors in C. annuum, including phylogenetic relationships, gene structures, protein motif arrangement, and RT-qPCR expression analyses and their role in salinity stress. In total, ten genes encode CaARRs-B transcription factors (CaARR1 to CaARR10) from the largest subfamily of type-B ARRs were identified in C. annum. The genome-wide analyses of the CaARRs-B family in C. annuum were performed based on the reported ARRs-B genes in Arabidopsis. An analysis of homologous alignments of candidate genes, including their phylogenetic relationships, gene structures, conserved domains, and qPCR expression profiles, was conducted. In comparison with other plant ARRs-B proteins, CaARRs-B proteins showed gene conservation and potentially specialized functions. In addition, tissue-specific expression profiles showed that CaARRs-B genes were differentially expressed, suggesting functionally divergent. CaARRs-B proteins had a typical conserved domain, including AAR-like (pfam: PF00072) and Myb DNA binding (pfam: PF00249) domains. Ten of the CaARRs-B genes were asymmetrically mapped on seven chromosomes in Pepper. Additionally, the phylogenetic tree of CaARRs-B genes from C. annuum and other plant species revealed that CaARRs-B genes were classified into four clusters, which may have evolved conservatively. Further, using quantitative real-time qRT-PCR, the study assessed the expression patterns of CaARRs-B genes in Capsicum annuum seedlings subjected to salt stress. The study used quantitative real-time qRT-PCR to examine CaARRs-B gene expression in Capsicum annuum seedlings under salt stress. Roots exhibited elevated expression of CaARR2 and CaARR9, while leaves showed decreased expression for CaARR3, CaARR4, CaARR7, and CaARR8. Notably, no amplification was observed for CaARR10. This research sheds light on the roles of CaARRs-B genes in pepper's response to salinity stress. These findings enrich our comprehension of the functional implications of CaARRs-B genes in pepper, especially in responding to salinity stress,laying a solid groundwork for subsequent in-depth studies and applications in the growth and development of Capsicum annuum.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Genome-Wide Identification, Characterization, and Expression Profiling of the Legume BZR Transcription Factor Gene Family
    Li, Yueying
    He, Liangliang
    Li, Jing
    Chen, Jianghua
    Liu, Changning
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [42] Genome-Wide Identification and Expression Analysis of the Walnut C-Repeat Binding Factor Gene Family under Low-Temperature Stress
    Liu, Ningfang
    Du, Hao
    Xue, Yansheng
    Liao, Yongling
    Zhang, Weiwei
    Ye, Jiabao
    Wang, Qijian
    Xu, Feng
    FORESTS, 2023, 14 (11):
  • [43] Genome-wide identification and characterization of WRKY gene family in Salix suchowensis
    Bi, Changwei
    Xu, Yiqing
    Ye, Qiaolin
    Yin, Tongming
    Ye, Ning
    PEERJ, 2016, 4
  • [44] Genome-Wide Characterization and Expression Analysis of the HD-ZIP Gene Family in Response to Salt Stress in Pepper
    Zhang, Zhongrong
    Zhu, Ranran
    Ji, Xuehua
    Li, Hui Ji
    Lv, Hui
    Zhang, Hai Ying
    INTERNATIONAL JOURNAL OF GENOMICS, 2021, 2021
  • [45] Genome-Wide Identification of SMXL Gene Family in Soybean and Expression Analysis of GmSMXLs under Shade Stress
    Zhang, Han
    Wang, Li
    Gao, Yang
    Guo, Yukai
    Zheng, Naiwen
    Xu, Xiangyao
    Xu, Mei
    Wang, Wenyan
    Liu, Chunyan
    Liu, Weiguo
    Yang, Wenyu
    PLANTS-BASEL, 2022, 11 (18):
  • [46] Genome-Wide Identification of the Brassinosteroid Signal Kinase Gene Family and Its Profiling under Salinity Stress
    Shi, Biao
    Wang, Youwu
    Wang, Liang
    Zhu, Shengwei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (15)
  • [47] Genome-Wide Survey of the Soybean GATA Transcription Factor Gene Family and Expression Analysis under Low Nitrogen Stress
    Zhang, Chanjuan
    Hou, Yuqing
    Hao, Qingnan
    Chen, Haifeng
    Chen, Limiao
    Yuan, Songli
    Shan, Zhihui
    Zhang, Xiaojuan
    Yang, Zhonglu
    Qiu, Dezhen
    Zhou, Xinan
    Huang, Wenjun
    PLOS ONE, 2015, 10 (04):
  • [48] Genome-wide identification and characterization of the DREB transcription factor gene family in mulberry
    Liu, X. Q.
    Zhu, J. J.
    Wei, C. J.
    Guo, Q.
    Bian, C. K.
    Xiang, Z. H.
    Zhao, A. C.
    BIOLOGIA PLANTARUM, 2015, 59 (02) : 253 - 265
  • [49] Genome-wide identification of NAC transcription factors in Avena sativa under salinity stress
    Bokolia, Muskan
    Singh, Baljinder
    Kumar, Avneesh
    Goyal, Nandni
    Singh, Kashmir
    Chhabra, Ravindresh
    PLANT STRESS, 2023, 10
  • [50] The Auxin Response Factor Transcription Factor Family in Soybean: Genome-Wide Identification and Expression Analyses During Development and Water Stress
    Chien Van Ha
    Dung Tien Le
    Nishiyama, Rie
    Watanabe, Yasuko
    Sulieman, Saad
    Uyen Thi Tran
    Mochida, Keiichi
    Nguyen Van Dong
    Yamaguchi-Shinozaki, Kazuko
    Shinozaki, Kazuo
    Lam-Son Phan Tran
    DNA RESEARCH, 2013, 20 (05) : 511 - 524