Identification of a Prognostic Risk-Scoring Model Based on Amino Acid Metabolism in Renal Clear Cell Carcinoma

被引:1
作者
Yu, Nengfeng [1 ]
Zheng, Gangfu [1 ]
Xu, Congcong [2 ]
Du, Jiaqi [1 ]
Zhou, Dingya [1 ]
Xing, Chengcheng [1 ]
Cheng, Honghui [1 ]
Zhou, Zhan [1 ,3 ,4 ]
Zheng, Yichun [1 ,2 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 4, Sch Med, Dept Urol, Yiwu 322000, Zhejiang, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Urol, Hangzhou 310017, Zhejiang, Peoples R China
[3] Zhejiang Univ, Innovat Inst Artificial Intelligence Med, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China
[4] Zhejiang Univ, Coll Pharmaceut Sci, Zhejiang Prov Key Lab Anticanc Drug Res, Hangzhou 310058, Zhejiang, Peoples R China
关键词
amino acid metabolism (AAM); clear cell renal cell carcinoma (ccRCC); genomics; immunological signature; prognostic model; FATTY-ACID; CANCER; BCAT1; CHECKPOINT;
D O I
10.23812/j.biol.regul.homeost.agents.20233709.457
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Amino acid metabolism (AAM) plays a significant role in the biological processes of cancer. However, the role of AAM in terms of prognosis, tumor-related immunity, and therapy effectiveness in patients with clear cell renal cell carcinoma (ccRCC) has not been thoroughly explored. Therefore, the present study aimed to explore the role of AAM in ccRCC from the aforementioned aspects.Methods: In this study, we used RNA-seq and clinical data from The Cancer Genome Atlas (TCGA) to construct an AAM-related risk model (AAMRSM) for ccRCC. We employed the least absolute shrinkage and selection operator (LASSO), Cox regression analyses, and random forest algorithm to develop the model.Results: We discovered a strong correlation between the AAMRS and prognosis (p < 0.05). The nomogram, which was built using the AAMRS and several clinical parameters, demonstrated significant predictive power. In addition, individuals categorized by the AAMRS showed distinguishable immune status, T-cell-related immune factors, tumor mutation burden (TMB), and medical sensitivity (p < 0.05). Conclusions: In conclusion, the association between AAMRS and prognosis, immunological landscape, and therapy effectiveness has been established. The use of AAMRSM can aid doctors in selecting more individualized and accurate treatments for patients with ccRCC.
引用
收藏
页码:4675 / 4690
页数:16
相关论文
共 57 条
[11]   Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells [J].
Hosios, Aaron M. ;
Hecht, Vivian C. ;
Danai, Laura V. ;
Johnson, Marc O. ;
Rathmell, Jeffrey C. ;
Steinhauser, Matthew L. ;
Manalis, Scott R. ;
Vander Heiden, Matthew G. .
DEVELOPMENTAL CELL, 2016, 36 (05) :540-549
[12]   In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma [J].
Kaushik, Akash K. ;
Tarangelo, Amy ;
Boroughs, Lindsey K. ;
Ragavan, Mukundan ;
Zhang, Yuanyuan ;
Wu, Cheng-Yang ;
Li, Xiangyi ;
Ahumada, Kristen ;
Chiang, Jui-Chung ;
Tcheuyap, Vanina T. ;
Saatchi, Faeze ;
Do, Quyen N. ;
Yong, Cissy ;
Rosales, Tracy ;
Stevens, Christina ;
Rao, Aparna D. ;
Faubert, Brandon ;
Pachnis, Panayotis ;
Zacharias, Lauren G. ;
Hieu Vu ;
Cai, Feng ;
Mathews, Thomas P. ;
Genovese, Giannicola ;
Slusher, Barbara S. ;
Kapur, Payal ;
Sun, Xiankai ;
Merritt, Matthew ;
Brugarolas, James ;
DeBerardinis, Ralph J. .
SCIENCE ADVANCES, 2022, 8 (50)
[13]   Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment [J].
Kfoury, Youmna ;
Baryawno, Ninib ;
Severe, Nicolas ;
Mei, Shenglin ;
Gustafsson, Karin ;
Hirz, Taghreed ;
Brouse, Thomas ;
Scadden, Elizabeth W. ;
Igolkina, Anna A. ;
Kokkaliaris, Konstantinos ;
Choi, Bryan D. ;
Barkas, Nikolas ;
Randolph, Mark A. ;
Shin, John H. ;
Saylor, Philip J. ;
Scadden, David T. ;
Sykes, David B. ;
Kharchenko, Peter, V .
CANCER CELL, 2021, 39 (11) :1464-+
[14]   Human acute leukemia uses branched-chain amino acid catabolism to maintain stemness through regulating PRC2 function [J].
Kikushige, Yoshikane ;
Miyamoto, Toshihiro ;
Kochi, Yu ;
Semba, Yuichiro ;
Ohishi, Maki ;
Irifune, Hidetoshi ;
Hatakeyama, Kiwamu ;
Kunisaki, Yuya ;
Sugio, Takeshi ;
Sakoda, Teppei ;
Miyawaki, Kohta ;
Kato, Koji ;
Soga, Tomoyoshi ;
Akashi, Koichi .
BLOOD ADVANCES, 2023, 7 (14) :3592-3603
[15]   Novel deep learning-based survival prediction for oral cancer by analyzing tumor-infiltrating lymphocyte profiles through CIBERSORT [J].
Kim, Yeongjoo ;
Kang, Ji Wan ;
Kang, Junho ;
Kwon, Eun Jung ;
Ha, Mihyang ;
Kim, Yoon Kyeong ;
Lee, Hansong ;
Rhee, Je-Keun ;
Kim, Yun Hak .
ONCOIMMUNOLOGY, 2021, 10 (01)
[16]   Mutational heterogeneity in cancer and the search for new cancer-associated genes [J].
Lawrence, Michael S. ;
Stojanov, Petar ;
Polak, Paz ;
Kryukov, Gregory V. ;
Cibulskis, Kristian ;
Sivachenko, Andrey ;
Carter, Scott L. ;
Stewart, Chip ;
Mermel, Craig H. ;
Roberts, Steven A. ;
Kiezun, Adam ;
Hammerman, Peter S. ;
McKenna, Aaron ;
Drier, Yotam ;
Zou, Lihua ;
Ramos, Alex H. ;
Pugh, Trevor J. ;
Stransky, Nicolas ;
Helman, Elena ;
Kim, Jaegil ;
Sougnez, Carrie ;
Ambrogio, Lauren ;
Nickerson, Elizabeth ;
Shefler, Erica ;
Cortes, Maria L. ;
Auclair, Daniel ;
Saksena, Gordon ;
Voet, Douglas ;
Noble, Michael ;
DiCara, Daniel ;
Lin, Pei ;
Lichtenstein, Lee ;
Heiman, David I. ;
Fennell, Timothy ;
Imielinski, Marcin ;
Hernandez, Bryan ;
Hodis, Eran ;
Baca, Sylvan ;
Dulak, Austin M. ;
Lohr, Jens ;
Landau, Dan-Avi ;
Wu, Catherine J. ;
Melendez-Zajgla, Jorge ;
Hidalgo-Miranda, Alfredo ;
Koren, Amnon ;
McCarroll, Steven A. ;
Mora, Jaume ;
Lee, Ryan S. ;
Crompton, Brian ;
Onofrio, Robert .
NATURE, 2013, 499 (7457) :214-218
[17]   A genome-scale screen for synthetic drivers of T cell proliferation [J].
Legut, Mateusz ;
Gajic, Zoran ;
Guarino, Maria ;
Daniloski, Zharko ;
Rahman, Jahan A. ;
Xue, Xinhe ;
Lu, Congyi ;
Lu, Lu ;
Mimitou, Eleni P. ;
Hao, Stephanie ;
Davoli, Teresa ;
Diefenbach, Catherine ;
Smibert, Peter ;
Sanjana, Neville E. .
NATURE, 2022, 603 (7902) :728-+
[18]   Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects [J].
Li, Chunxiao ;
Jiang, Ping ;
Wei, Shuhua ;
Xu, Xiaofei ;
Wang, Junjie .
MOLECULAR CANCER, 2020, 19 (01)
[19]   TIMER2.0 for analysis of tumor-infiltrating immune cells [J].
Li, Taiwen ;
Fu, Jingxin ;
Zeng, Zexian ;
Cohen, David ;
Li, Jing ;
Chen, Qianming ;
Li, Bo ;
Liu, X. Shirley .
NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) :W509-W514
[20]   The Molecular Signatures Database Hallmark Gene Set Collection [J].
Liberzon, Arthur ;
Birger, Chet ;
Thorvaldsdottir, Helga ;
Ghandi, Mahmoud ;
Mesirov, Jill P. ;
Tamayo, Pablo .
CELL SYSTEMS, 2015, 1 (06) :417-425