Identification of a Prognostic Risk-Scoring Model Based on Amino Acid Metabolism in Renal Clear Cell Carcinoma

被引:1
作者
Yu, Nengfeng [1 ]
Zheng, Gangfu [1 ]
Xu, Congcong [2 ]
Du, Jiaqi [1 ]
Zhou, Dingya [1 ]
Xing, Chengcheng [1 ]
Cheng, Honghui [1 ]
Zhou, Zhan [1 ,3 ,4 ]
Zheng, Yichun [1 ,2 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 4, Sch Med, Dept Urol, Yiwu 322000, Zhejiang, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Urol, Hangzhou 310017, Zhejiang, Peoples R China
[3] Zhejiang Univ, Innovat Inst Artificial Intelligence Med, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China
[4] Zhejiang Univ, Coll Pharmaceut Sci, Zhejiang Prov Key Lab Anticanc Drug Res, Hangzhou 310058, Zhejiang, Peoples R China
关键词
amino acid metabolism (AAM); clear cell renal cell carcinoma (ccRCC); genomics; immunological signature; prognostic model; FATTY-ACID; CANCER; BCAT1; CHECKPOINT;
D O I
10.23812/j.biol.regul.homeost.agents.20233709.457
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Amino acid metabolism (AAM) plays a significant role in the biological processes of cancer. However, the role of AAM in terms of prognosis, tumor-related immunity, and therapy effectiveness in patients with clear cell renal cell carcinoma (ccRCC) has not been thoroughly explored. Therefore, the present study aimed to explore the role of AAM in ccRCC from the aforementioned aspects.Methods: In this study, we used RNA-seq and clinical data from The Cancer Genome Atlas (TCGA) to construct an AAM-related risk model (AAMRSM) for ccRCC. We employed the least absolute shrinkage and selection operator (LASSO), Cox regression analyses, and random forest algorithm to develop the model.Results: We discovered a strong correlation between the AAMRS and prognosis (p < 0.05). The nomogram, which was built using the AAMRS and several clinical parameters, demonstrated significant predictive power. In addition, individuals categorized by the AAMRS showed distinguishable immune status, T-cell-related immune factors, tumor mutation burden (TMB), and medical sensitivity (p < 0.05). Conclusions: In conclusion, the association between AAMRS and prognosis, immunological landscape, and therapy effectiveness has been established. The use of AAMRSM can aid doctors in selecting more individualized and accurate treatments for patients with ccRCC.
引用
收藏
页码:4675 / 4690
页数:16
相关论文
共 57 条
[1]  
Aran D, 2020, METHODS MOL BIOL, V2120, P263, DOI 10.1007/978-1-0716-0327-7_19
[2]   Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade [J].
Charoentong, Pornpimol ;
Finotello, Francesca ;
Angelova, Mihaela ;
Mayer, Clemens ;
Efremova, Mirjana ;
Rieder, Dietmar ;
Hackl, Hubert ;
Trajanoski, Zlatko .
CELL REPORTS, 2017, 18 (01) :248-262
[3]   A Novel Immune-Related Gene Signature to Identify the Tumor Microenvironment and Prognose Disease Among Patients With Oral Squamous Cell Carcinoma Patients Using ssGSEA: A Bioinformatics and Biological Validation Study [J].
Chen, Yun ;
Feng, Yunzhi ;
Yan, Fei ;
Zhao, Yaqiong ;
Zhao, Han ;
Guo, Yue .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[4]   Novel amino acid metabolism-related gene signature to predict prognosis in clear cell renal cell carcinoma [J].
Cheng, Xiaofeng ;
Deng, Wen ;
Zhang, Zhicheng ;
Zeng, Zhenhao ;
Liu, Yifu ;
Zhou, Xiaochen ;
Zhang, Cheng ;
Wang, Gongxian .
FRONTIERS IN GENETICS, 2022, 13
[5]   The Diverse Functions of Non-Essential Amino Acids in Cancer [J].
Choi, Bo-Hyun ;
Coloff, Jonathan L. .
CANCERS, 2019, 11 (05)
[6]   Comprehensivemolecular characterization of clear cell renal cell carcinoma [J].
Creighton, Chad J. ;
Morgan, Margaret ;
Gunaratne, Preethi H. ;
Wheeler, David A. ;
Gibbs, Richard A. ;
Robertson, A. Gordon ;
Chu, Andy ;
Beroukhim, Rameen ;
Cibulskis, Kristian ;
Signoretti, Sabina ;
Vandin, Fabio ;
Wu, Hsin-Ta ;
Raphael, Benjamin J. ;
Verhaak, Roel G. W. ;
Tamboli, Pheroze ;
Torres-Garcia, Wandaliz ;
Akbani, Rehan ;
Weinstein, John N. ;
Reuter, Victor ;
Hsieh, James J. ;
Brannon, A. Rose ;
Hakimi, A. Ari ;
Jacobsen, Anders ;
Ciriello, Giovanni ;
Reva, Boris ;
Ricketts, Christopher J. ;
Linehan, W. Marston ;
Stuart, Joshua M. ;
Rathmell, W. Kimryn ;
Shen, Hui ;
Laird, Peter W. ;
Muzny, Donna ;
Davis, Caleb ;
Morgan, Margaret ;
Xi, Liu ;
Chang, Kyle ;
Kakkar, Nipun ;
Trevino, Lisa R. ;
Benton, Susan ;
Reid, Jeffrey G. ;
Morton, Donna ;
Doddapaneni, Harsha ;
Han, Yi ;
Lewis, Lora ;
Dinh, Huyen ;
Kovar, Christie ;
Zhu, Yiming ;
Santibanez, Jireh ;
Wang, Min ;
Hale, Walker .
NATURE, 2013, 499 (7456) :43-+
[7]   Metabolic reprogramming and cancer progression [J].
Faubert, Brandon ;
Solmonson, Ashley ;
DeBerardinis, Ralph J. .
SCIENCE, 2020, 368 (6487) :152-+
[8]   Large-scale public data reuse to model immunotherapy response and resistance [J].
Fu, Jingxin ;
Li, Karen ;
Zhang, Wubing ;
Wan, Changxin ;
Zhang, Jing ;
Jiang, Peng ;
Liu, X. Shirley .
GENOME MEDICINE, 2020, 12 (01)
[9]   Tumor-associated Macrophage-derived Interleukin-23 Interlinks Kidney Cancer Glutamine Addiction with Immune Evasion [J].
Fu, Qiang ;
Xu, Le ;
Wang, Yiwei ;
Jiang, Qi ;
Liu, Zheng ;
Zhang, Junyu ;
Zhou, Quan ;
Zeng, Han ;
Tong, Shanyou ;
Wang, Tao ;
Qi, Yangyang ;
Hu, Baoying ;
Fu, Hangcheng ;
Xie, Huyang ;
Zhou, Lin ;
Chang, Yuan ;
Zhu, Yu ;
Dai, Bo ;
Zhang, Weijuan ;
Xu, Jiejie .
EUROPEAN UROLOGY, 2019, 75 (05) :752-763
[10]   pRRophetic: An R Package for Prediction of Clinical Chemotherapeutic Response from Tumor Gene Expression Levels [J].
Geeleher, Paul ;
Cox, Nancy ;
Huang, R. Stephanie .
PLOS ONE, 2014, 9 (09)