A feasible semi-quantum private comparison based on entanglement swapping of Bell states

被引:7
作者
Ye, Chong-Qiang [1 ]
Li, Jian [2 ]
Chen, Xiu-Bo [2 ]
Hou, Yanyan [3 ]
机构
[1] Beijing Univ Posts Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Informat Secur Ctr, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[3] ZaoZhuang Univ, Coll Informat Sci & Engn, ZaoZhuang 277160, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum cryptography; Semi-quantum private comparison; Entanglement swapping; Bell states; High qubit efficiency; COMMUNICATION PROTOCOLS;
D O I
10.1016/j.physa.2023.129023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Semi-quantum private comparison (SQPC) enables two classical users with limited quantum capabilities to compare confidential information using a semi-honest third party (TP) with full quantum power. However, entanglement swapping, as an important property of quantum mechanics in previously proposed SQPC protocols is usually neglected. In this paper, we propose a feasible SQPC protocol based on the entanglement swapping of Bell states, eliminating the need for an additional semi-quantum key distribution protocol to ensure the security of private data. Security analysis shows that our protocol is resilient to both external and internal attacks. To verify the feasibility and correctness of the proposed SQPC protocol, we design and simulate the corresponding quantum circuits using IBM Qiskit. Finally, we compare and discuss our protocol with related work. The results reveal that our protocol maintains high qubit efficiency, even when entanglement swapping is employed. Consequently, our proposed approach showcases the potential applications of entanglement swapping in the field of semi-quantum cryptography. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 43 条
[1]   Semiquantum key distribution [J].
Boyer, Michel ;
Gelles, Ran ;
Kenigsberg, Dan ;
Mor, Tal .
PHYSICAL REVIEW A, 2009, 79 (03)
[2]   Quantum key distribution with classical Bob [J].
Boyer, Michel ;
Kenigsberg, Dan ;
Mor, Tal .
PHYSICAL REVIEW LETTERS, 2007, 99 (14)
[3]   Eavesdropping on the two-way quantum communication protocols with invisible photons [J].
Cai, QY .
PHYSICS LETTERS A, 2006, 351 (1-2) :23-25
[4]   Efficient mediated semi-quantum key distribution [J].
Chen, Lingli ;
Li, Qin ;
Liu, Chengdong ;
Peng, Yu ;
Yu, Fang .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 582 (582)
[5]  
Chou WH, 2016, Arxiv, DOI arXiv:1607.07961
[6]  
Crepeau C., 2002, STOC 02 PROC 34RD AN, P643, DOI [10.1145/509907.510000, DOI 10.1145/509907.510000, 10.1103/PhysRevA.102.022405]
[7]  
Deng FG, 2005, Arxiv, DOI arXiv:quant-ph/0508168
[8]  
Du W., 2001, P 2001 WORKSHOP NEW, P13
[9]   Quantum private query: A new kind of practical quantum cryptographic protocol [J].
Gao, Fei ;
Qin, SuJuan ;
Huang, Wei ;
Wen, QiaoYan .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (07)
[10]   Single-state semiquantum private comparison based on Bell states [J].
Geng, Mao-Jie ;
Chen, Ying ;
Xu, Tian-Jie ;
Ye, Tian-Yu .
EPJ QUANTUM TECHNOLOGY, 2022, 9 (01)