A foundation model for generalizable disease detection from retinal images

被引:320
作者
Zhou, Yukun [1 ,2 ,3 ,4 ]
Chia, Mark A. [2 ,4 ]
Wagner, Siegfried K. [2 ,4 ]
Ayhan, Murat S. [1 ,2 ,4 ]
Williamson, Dominic J. [1 ,2 ,4 ]
Struyven, Robbert R. [1 ,2 ,4 ]
Liu, Timing [2 ]
Xu, Moucheng [1 ,3 ]
Lozano, Mateo G. [2 ,5 ]
Woodward-Court, Peter [1 ,2 ,6 ]
Kihara, Yuka [7 ,8 ]
Altmann, Andre [1 ,3 ]
Lee, Aaron Y. [7 ,8 ]
Topol, Eric J. [9 ]
Denniston, Alastair K. [10 ,11 ]
Alexander, Daniel C. [1 ,12 ]
Keane, Pearse A. [2 ,4 ]
机构
[1] UCL, Ctr Med Image Comp, London, England
[2] Moorfields Eye Hosp NHS Fdn Trust, NIHR Biomed Res Ctr, London, England
[3] UCL, Dept Med Phys & Biomed Engn, London, England
[4] UCL, Inst Ophthalmol, London, England
[5] Univ A Coruna, Dept Comp Sci, La Coruna, Spain
[6] UCL, Inst Hlth Informat, London, England
[7] Univ Washington, Dept Ophthalmol, Seattle, WA 98195 USA
[8] Univ Washington, Roger & Angie Karalis Johnson Retina Ctr, Seattle, WA 98195 USA
[9] Scripps Res, Dept Mol Med, La Jolla, CA USA
[10] Univ Birmingham, Acad Unit Ophthalmol, Birmingham, W Midlands, England
[11] Univ Hosp Birmingham NHS Fdn Trust, Birmingham, W Midlands, England
[12] UCL, Dept Comp Sci, London, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
CLASSIFICATION; PERFORMANCE; AGE;
D O I
10.1038/s41586-023-06555-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders(1). However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications(2). Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging. RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled images, is trained on 1.6million unlabelled images by self-supervised learning and then adapted to disease detection tasks with explicit labels.
引用
收藏
页码:156 / +
页数:26
相关论文
共 59 条
[1]   Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy [J].
Abramoff, Michael D. ;
Folk, James C. ;
Han, Dennis P. ;
Walker, Jonathan D. ;
Williams, David F. ;
Russell, Stephen R. ;
Massin, Pascale ;
Cochener, Beatrice ;
Gain, Philippe ;
Tang, Li ;
Lamard, Mathieu ;
Moga, Daniela C. ;
Quellec, Gwenole ;
Niemeijer, Meindert .
JAMA OPHTHALMOLOGY, 2013, 131 (03) :351-357
[2]   A deep learning model for the detection of both advanced and early glaucoma using fundus photography [J].
Ahn, Jin Mo ;
Kim, Sangsoo ;
Ahn, Kwang-Sung ;
Cho, Sung-Hoon ;
Lee, Kwan Bok ;
Kim, Ungsoo Samuel .
PLOS ONE, 2018, 13 (11)
[3]  
[Anonymous], 2004, INT STAT CLASS DIS R
[4]   Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection [J].
Ayhan, Murat Seckin ;
Kuhlewein, Laura ;
Aliyeva, Gulnar ;
Inhoffen, Werner ;
Ziemssen, Focke ;
Berens, Philipp .
MEDICAL IMAGE ANALYSIS, 2020, 64
[5]   Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging [J].
Azizi, Shekoofeh ;
Culp, Laura ;
Freyberg, Jan ;
Mustafa, Basil ;
Baur, Sebastien ;
Kornblith, Simon ;
Chen, Ting ;
Tomasev, Nenad ;
Mitrovic, Jovana ;
Strachan, Patricia ;
Mahdavi, S. Sara ;
Wulczyn, Ellery ;
Babenko, Boris ;
Walker, Megan ;
Loh, Aaron ;
Chen, Po-Hsuan Cameron ;
Liu, Yuan ;
Bavishi, Pinal ;
McKinney, Scott Mayer ;
Winkens, Jim ;
Roy, Abhijit Guha ;
Beaver, Zach ;
Ryan, Fiona ;
Krogue, Justin ;
Etemadi, Mozziyar ;
Telang, Umesh ;
Liu, Yun ;
Peng, Lily ;
Corrado, Greg S. ;
Webster, Dale R. ;
Fleet, David ;
Hinton, Geoffrey ;
Houlsby, Neil ;
Karthikesalingam, Alan ;
Norouzi, Mohammad ;
Natarajan, Vivek .
NATURE BIOMEDICAL ENGINEERING, 2023, 7 (06) :756-+
[6]  
Bommasani R., 2021, PREPRINT
[7]   Detecting Anomalies in Retinal Diseases Using Generative, Discriminative, and Self-supervised Deep Learning [J].
Burlina, Philippe ;
Paul, William ;
Liu, T. Y. Alvin ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2022, 140 (02) :185-189
[8]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+
[9]  
Caron M, 2020, ADV NEUR IN, V33
[10]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640