First-principles study on the lattice vibration, anisotropy, tensile strength and electronic properties of CuxHfySiz intermetallics

被引:2
|
作者
Li, Chen [1 ]
Zhang, Xudong [1 ]
Wang, Feng [2 ]
机构
[1] Shenyang Univ Technol, Sch Sci, Shenyang 110870, Peoples R China
[2] Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang, Peoples R China
关键词
Phonon vibration; Anisotropy in elasticity; Anisotropy; Tensile strength; Electronic properties; THERMODYNAMIC PROPERTIES; COPPER; SI; DIFFUSION; AL;
D O I
10.1016/j.cplett.2023.140811
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The stability, lattice vibrations, anisotropy in elasticity and stress-strain behavior of the CuxHfySiz ternary silicide were calculated by first-principles methods. According to the formation enthalpy and lattice vibration frequency, the CuxHfySiz phase is confirmed to be stable. The elastic constants show that these ternary borides are mechanically stable. Based on the B-H/G(H) rule, CuHfSi is 1.788 and more significant than 1.75, which should be ductile. The elastic hardness indicates that CuHfSi2 shows the largest hardness among CuxHfySiz phases, which is 18.9 GPa. It is speculated that CuHfSi2 may be the most muscular hardness in these four types of intermetallics. The size of anisotropy expressed by anisotropy and elastic modulus three-dimensional diagram is Cu4Hf3Si4 > Cu4Hf3Si2 > CuHfSi > CuHfSi2. The structural stability, hardness and chemical bonds were further explained by electronic structures.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] First-principles predictions for the tensile strength of Al metal with dislocations of twist grain boundaries
    Wang Ru-Zhi
    Xu Li-Chun
    Yan Hui
    Masanori, Kohyama
    ACTA PHYSICA SINICA, 2012, 61 (02)
  • [42] Electronic, mechanical, and optical properties of BP nanotubes: A first-principles study
    da Rocha, V. N.
    Cardoso, G. L.
    Piquini, P. C.
    Ahuja, R.
    COMPUTATIONAL CONDENSED MATTER, 2023, 34
  • [43] First-principles study of ceramic interfaces: Structures and electronic and mechanical properties
    Kohyama, Masanori
    Tanaka, Shingo
    Key Engineering Materials, 2009, 403 : 205 - 206
  • [44] A First-Principles Study of Electronic Properties of Twisted MoTe2
    Wu, Jiafang
    Meng, Lijun
    Yu, Jun
    Li, Yizhi
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (03):
  • [45] The Magnetic, Electronic, and Thermodynamic Properties of High Entropy Alloy CrMnFeCoNi: A First-Principles Study
    Wang, Shuo
    Zhang, Ting
    Hou, Hua
    Zhao, Yuhong
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2018, 255 (10):
  • [46] First-principles study of structural and electronic properties of different phases of GaAs
    Arabi, H
    Pourghazi, A
    Ahmadian, F
    Nourbakhsh, Z
    PHYSICA B-CONDENSED MATTER, 2006, 373 (01) : 16 - 22
  • [47] Structural stabilities, electronic and elastic properties for LaSb: A first-principles study
    Feng, Wenxia
    Cui, Shouxin
    Hu, Haiquan
    Gong, Zizheng
    Liu, Hong
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 47 (04) : 1060 - 1063
  • [48] First-principles study on the electronic and magnetic properties of BN/CrOBr heterostructures
    Xu, Chunyan
    Zhang, Jing
    Wang, Yanjie
    PHYSICS LETTERS A, 2023, 471
  • [49] First-principles study of structural, electronic and elastic properties of diboride of vanadium
    Zhou, Xuechao
    Zhang, Haiqian
    Cheng, Chuanwei
    Gao, Junshan
    Xu, Guoyue
    Li, Yingying
    Luo, Yan
    PHYSICA B-CONDENSED MATTER, 2009, 404 (8-11) : 1527 - 1531
  • [50] First-Principles Study of Ceramic Interfaces: Structures and Electronic and Mechanical Properties
    Kohyama, Masanori
    Tanaka, Shingo
    SIAIONS AND NON-OXIDES, 2009, 403 : 205 - 206