First-principles study on the lattice vibration, anisotropy, tensile strength and electronic properties of CuxHfySiz intermetallics

被引:2
|
作者
Li, Chen [1 ]
Zhang, Xudong [1 ]
Wang, Feng [2 ]
机构
[1] Shenyang Univ Technol, Sch Sci, Shenyang 110870, Peoples R China
[2] Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang, Peoples R China
关键词
Phonon vibration; Anisotropy in elasticity; Anisotropy; Tensile strength; Electronic properties; THERMODYNAMIC PROPERTIES; COPPER; SI; DIFFUSION; AL;
D O I
10.1016/j.cplett.2023.140811
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The stability, lattice vibrations, anisotropy in elasticity and stress-strain behavior of the CuxHfySiz ternary silicide were calculated by first-principles methods. According to the formation enthalpy and lattice vibration frequency, the CuxHfySiz phase is confirmed to be stable. The elastic constants show that these ternary borides are mechanically stable. Based on the B-H/G(H) rule, CuHfSi is 1.788 and more significant than 1.75, which should be ductile. The elastic hardness indicates that CuHfSi2 shows the largest hardness among CuxHfySiz phases, which is 18.9 GPa. It is speculated that CuHfSi2 may be the most muscular hardness in these four types of intermetallics. The size of anisotropy expressed by anisotropy and elastic modulus three-dimensional diagram is Cu4Hf3Si4 > Cu4Hf3Si2 > CuHfSi > CuHfSi2. The structural stability, hardness and chemical bonds were further explained by electronic structures.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The electronic, mechanical and lattice dynamic properties of TiSiY from first-principles calculations
    Tao, Xiaoma
    Chen, Chen
    Li, Shenling
    Ouyang, Yifang
    Du, Yong
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 65 : 485 - 489
  • [22] A first-principles study of structural, electronic and transport properties of aluminium and phosphorus-doped graphene
    Gadhavi, Pratik M.
    Poopanya, Piyawong
    Sivalertporn, Kanchana
    Talati, Mina
    COMPUTATIONAL CONDENSED MATTER, 2023, 36
  • [23] First-principles study on the elastic anisotropy and thermal properties of Mg-Y compounds
    Zhou, Yunxuan
    Lin, Yang
    Wang, Hailian
    Dong, Quan
    Tan, Jun
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2022, 171
  • [24] First-principles study of phase stability and electronic properties of RhZr
    Hu Jie-qiong
    Pan Yong
    Xie Ming
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2011, 21 (10) : 2301 - 2305
  • [25] A First-Principles Study of the Thermodynamic Properties of GaAs under Intense Electronic Excitation
    Feng, S. Q.
    Li, H. N.
    Li, B. M.
    Cheng, X. L.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (11) : 1326 - 1331
  • [26] First-principles Study of Structural, Electronic and Magnetic Properties of GdMg
    Kumari, Meena
    Verma, U. P.
    2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2017), 2018, 1953
  • [27] A first-principles study of the electronic and optical properties of monolayer α-PbO
    Masihi, Amin
    Naseri, Mosayeb
    Fatahi, Negin
    CHEMICAL PHYSICS LETTERS, 2019, 721 : 27 - 32
  • [28] First-principles study of the electronic, optical and bonding properties in dolomite
    Hossain, F. M.
    Dlugogorski, B. Z.
    Kennedy, E. M.
    Belova, I. V.
    Murch, G. E.
    COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (03) : 1037 - 1042
  • [29] First-principles study on structural and electronic properties of AINSix heterosheet
    Zhang, Jing
    Zhang, Jian-Min
    Xu, Ke-Wei
    PHYSICA B-CONDENSED MATTER, 2012, 407 (12) : 2301 - 2305
  • [30] Elastic properties, tensile strength, damage tolerance, electronic and thermal properties of TM3AlC2 (TM = Ti, Zr and Hf) MAX phases: A first-principles study
    Yang, Ancang
    Duan, Yonghua
    Bao, Longke
    Peng, Mingjun
    Shen, Li
    VACUUM, 2022, 206