Spatial and Temporal Attention-Enabled Transformer Network for Multivariate Short-Term Residential Load Forecasting

被引:11
|
作者
Zhao, Hongshan [1 ]
Wu, Yuchen [1 ]
Ma, Libo [1 ]
Pan, Sichao [1 ]
机构
[1] North China Elect Power Univ, Sch Elect & Elect Engn, Baoding 071003, Peoples R China
关键词
Load modeling; Load forecasting; Predictive models; Autocorrelation; Transformers; Market research; Probabilistic logic; Monte Carlo (MC) dropout; probabilistic forecasting; residential load forecasting; spatial-temporal correlation; transformer; NEURAL-NETWORK; PREDICTION;
D O I
10.1109/TIM.2023.3305655
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Short-term residential load forecasting (STRLF) is critical for the safe and stable operation of the microgrid system. Due to shred conditions such as temperature and holiday impacts, households in the same region may exhibit similar consumption patterns. However, existing STRLF methods focus mainly on exploring the temporal patterns of a single household; the spatial correlations between multiple households are generally ignored. To address this challenge, a spatial and temporal attention-enabled transformer model, STformer, is proposed to extract the dynamic spatial and nonlinear temporal correlations between residential units and perform joint predictions of multivariate residential loads. The combination of improved temporal attention and spatial attention mechanisms allows the proposed method to capture complex spatial and temporal factors without prior geographical information. The Monte Carlo (MC) dropout method is utilized to further extend the proposed model to multitask residential probabilistic load forecasting. Compared to Transformer, the proposed model improves the point forecast accuracy of individual New York (NY), USA, and Los Angeles (LA), USA, by 16.54% and 6.95%, and the combined point forecast accuracy by 22.46% and 11.86%, respectively. In addition, the proposed model improved the residential probabilistic load prediction accuracy by 10.21% and 11.07% in NY and LA, respectively, compared to SGPR.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network
    Kong, Weicong
    Dong, Zhao Yang
    Jia, Youwei
    Hill, David J.
    Xu, Yan
    Zhang, Yuan
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 841 - 851
  • [22] Federated Learning for Short-Term Residential Load Forecasting
    Briggs, Christopher
    Fan, Zhong
    Andras, Peter
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2022, 9 : 573 - 583
  • [23] Multiple Wavelet Convolutional Neural Network for Short-Term Load Forecasting
    Liao, Zhifang
    Pan, Haihui
    Fan, Xiaoping
    Zhang, Yan
    Kuang, Li
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12) : 9730 - 9739
  • [24] Short-Term Load Forecasting for Multiple Customers in A Station Area Based on Spatial-Temporal Attention Mechanism
    Zhao H.
    Wu Y.
    Wen K.
    Sun C.
    Xue Y.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2024, 39 (07): : 2104 - 2115
  • [25] Short-term residential electric load forecasting: A compressive spatio-temporal approach
    Tascikaraoglu, Akin
    Sanandaji, Borhan M.
    ENERGY AND BUILDINGS, 2016, 111 : 380 - 392
  • [26] Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
    Huang, Lei
    Mao, Feng
    Zhang, Kai
    Li, Zhiheng
    SENSORS, 2022, 22 (03)
  • [27] Optimized Deep Stacked Long Short-Term Memory Network for Long-Term Load Forecasting
    Farrag, Tamer Ahmed
    Elattar, Ehab E.
    IEEE ACCESS, 2021, 9 : 68511 - 68522
  • [28] Application of Bidirectional Recurrent Neural Network Combined With Deep Belief Network in Short-Term Load Forecasting
    Tang, Xianlun
    Dai, Yuyan
    Liu, Qing
    Dang, Xiaoyuan
    Xu, Jin
    IEEE ACCESS, 2019, 7 : 160660 - 160670
  • [29] MFAMNet: Multi-Scale Feature Attention Mixture Network for Short-Term Load Forecasting
    Yang, Shengchun
    Zhu, Kedong
    Li, Feng
    Weng, Liguo
    Cheng, Liangcheng
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [30] Hierarchical Multiobjective Distributed Deep Learning for Residential Short-Term Electric Load Forecasting
    Sakuma, Yuiko
    Nishi, Hiroaki
    IEEE ACCESS, 2022, 10 : 69950 - 69962