Glass and glass ceramic electrodes and solid electrolyte materials for lithium ion batteries: A review

被引:10
|
作者
Wang, Zihan [1 ,2 ,4 ]
Luo, Shao-hua [1 ,2 ,4 ]
Zhang, Xian [1 ,2 ,4 ]
Guo, Song [1 ,2 ,4 ]
Li, Pengwei [1 ,3 ]
Yan, Shengxue [1 ,2 ,4 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Peoples R China
[3] Aalborg Univ, Dept Chem & Biosci, DK-9220 Aalborg, Denmark
[4] Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; Anode; Glass; Glass ceramic; Metal -organic framework (MOF); ANODE MATERIALS; MECHANOCHEMICAL SYNTHESIS; HIGH-CAPACITY; ELECTROCHEMICAL PROPERTIES; COMPOSITE ELECTROLYTES; ELECTRICAL-PROPERTIES; CHEMICAL-STABILITY; SNO-P2O5; GLASSES; PHOSPHATE GLASS; RECENT PROGRESS;
D O I
10.1016/j.jnoncrysol.2023.122581
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to its distinct network structure, lack of a grain boundary, and isotropic qualities, glass has been the subject of extensive research. Lithium ion batteries can have their capacity and safety increased by using glassy electrode and electrolyte materials. We discuss the properties and uses of several types of glass and glass ceramic as anodes, including tin oxide glass, vanadium oxide glass, and so on. Metal-organic framework (MOF) materials are also investigated as a new generation of high-performance anode materials. We present the usage of glassy MOF materials to overcome MOF material volume change during charge and discharge, as well as the order and disorder transition of certain MOF materials during charge and discharge. The use of vanadium-based glass as a cathode material is also discussed. These materials have the potential to be employed as electrode materials in the next generation of lithium- ion batteries. In addition, the application of glass, especially sulfide glass, as an all-solid-state battery electrolyte and the effect of mixed anion effect on improving the conductivity of solid electrolyte were introduced.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Mechanical Stability of the Heterogenous Bilayer Solid Electrolyte Interphase in the Electrodes of Lithium-Ion Batteries
    Ali, Yasir
    Iqbal, Noman
    Shah, Imran
    Lee, Seungjun
    MATHEMATICS, 2023, 11 (03)
  • [32] Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries
    Tatsumisago, Masahiro
    Hayashi, Akitoshi
    INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2014, 5 (03) : 226 - 235
  • [33] A fibrous solid electrolyte for lithium-ion batteries
    Erol, S.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2017, 49 : 128 - 132
  • [34] Generation and evolution of materials in the anode Solid Electrolyte Interphase (SEI) of lithium ion batteries
    Lucht, Brett
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [35] Generation and evolution of materials in the anode solid electrolyte interphase (SEI) of lithium ion batteries
    Lucht, Brett
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [36] Progress in solid electrolyte interface in lithium ion batteries
    Ni, JF
    Zhou, HH
    Chen, JT
    Su, GY
    PROGRESS IN CHEMISTRY, 2004, 16 (03) : 335 - 342
  • [37] Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes for Lithium Ion Batteries
    Tenhaeff, W. E.
    Yu, X.
    Hong, K.
    Perry, K. A.
    Dudney, N. J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (10) : A1143 - A1149
  • [38] A Glass Platelet Coating on Battery Electrodes and Its Use as a Separator for Lithium-Ion Batteries
    Schadeck, Ulrich
    Gerdes, Thorsten
    Krenkel, Walter
    Moos, Ralf
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (03)
  • [39] Li2TiSiO5 Glass Ceramic as Anode Materials for High-Performance Lithium-Ion Batteries
    Liu, Shujiang
    Tang, Wenzhe
    Ma, Jingyun
    Zhang, Yanfei
    Yue, Yuanzheng
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) : 9760 - 9768
  • [40] Electrode and electrolyte materials for plastic lithium ion batteries
    Appetecchi, GB
    Croce, F
    Gerace, F
    Panero, S
    Spila, E
    Scrosati, B
    GAZZETTA CHIMICA ITALIANA, 1997, 127 (06): : 325 - 330