Deep learning for morphological identification of extended radio galaxies using weak labels

被引:1
作者
Gupta, Nikhel [1 ,7 ]
Hayder, Zeeshan [2 ]
Norris, Ray P. [3 ,4 ]
Huynh, Minh [1 ,5 ]
Petersson, Lars [2 ]
Wang, X. Rosalind [3 ]
Andernach, Heinz [6 ]
Koribalski, Barbel S. [3 ,4 ]
Yew, Miranda [3 ]
Crawford, Evan J. [3 ]
机构
[1] CSIRO Space & Astron, Bentley, WA, Australia
[2] CSIRO Data61, Black Mt, ACT, Australia
[3] Western Sydney Univ, Penrith, NSW, Australia
[4] CSIRO Space & Astron, Epping, NSW, Australia
[5] Univ Western Australia, Int Ctr Radio Astron Res ICRAR, M468, Crawley, WA USA
[6] Thuringer Landessternwarte, Tautenburg, Germany
[7] Univ Guanajuato, DCNE, Dept Astron, Guanajuato, Mexico
来源
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA | 2023年 / 40卷
关键词
Galaxies: active; galaxies: peculiar; radio continuum: galaxies; Galaxy: evolution; methods: data analysis; CLASSIFICATION; COMPACT; LOFAR; ARRAY; SKY;
D O I
10.1017/pasa.2023.46
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The present work discusses the use of a weakly-supervised deep learning algorithm that reduces the cost of labelling pixel-level masks for complex radio galaxies with multiple components. The algorithm is trained on weak class-level labels of radio galaxies to get class activation maps (CAMs). The CAMs are further refined using an inter-pixel relations network (IRNet) to get instance segmentation masks over radio galaxies and the positions of their infrared hosts. We use data from the Australian Square Kilometre Array Pathfinder (ASKAP) telescope, specifically the Evolutionary Map of the Universe (EMU) Pilot Survey, which covered a sky area of 270 square degrees with an RMS sensitivity of 25-35 mu Jy beam(-1). We demonstrate that weakly-supervised deep learning algorithms can achieve high accuracy in predicting pixel-level information, including masks for the extended radio emission encapsulating all galaxy components and the positions of the infrared host galaxies. We evaluate the performance of our method using mean Average Precision (mAP) across multiple classes at a standard intersection over union (IoU) threshold of 0.5. We show that the model achieves a mAP(50) of 67.5% and 76.8% for radio masks and infrared host positions, respectively. The network architecture can be found at the following link: https://github.com/Nikhel1/Gal-CAM
引用
收藏
页数:13
相关论文
共 40 条
  • [1] Agarap A.F., 2018, arXiv, DOI DOI 10.48550/ARXIV.1803.08375
  • [2] Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations
    Ahn, Jiwoon
    Cho, Sunghyun
    Kwak, Suha
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2204 - 2213
  • [3] Radio Galaxy Zoo: machine learning for radio source host galaxy cross-identification
    Alger, M. J.
    Banfield, J. K.
    Ong, C. S.
    Rudnick, L.
    Wong, O. I.
    Wolf, C.
    Andernach, H.
    Norris, R. P.
    Shabala, S. S.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (04) : 5556 - 5572
  • [4] Radio Galaxy Zoo: discovery of a poor cluster through a giant wide-angle tail radio galaxy
    Banfield, J. K.
    Andernach, H.
    Kapinska, A. D.
    Rudnick, L.
    Hardcastle, M. J.
    Cotter, G.
    Vaughan, S.
    Jones, T. W.
    Heywood, I.
    Wing, J. D.
    Wong, O. I.
    Matorny, T.
    Terentev, I. A.
    Lopez-Sanchez, A. R.
    Norris, R. P.
    Seymour, N.
    Shabala, S. S.
    Willett, K. W.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (03) : 2376 - 2384
  • [5] CNN architecture comparison for radio galaxy classification
    Becker, Burger
    Vaccari, Mattia
    Prescott, Matthew
    Grobler, Trienko
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (02) : 1828 - 1846
  • [6] Attention-gating for improved radio galaxy classification
    Bowles, Micah
    Scaife, Anna M. M.
    Porter, Fiona
    Tang, Hongming
    Bastien, David J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 501 (03) : 4579 - 4595
  • [7] Feature guided training and rotational standardization for the morphological classification of radio galaxies
    Brand, Kevin
    Grobler, Trienko L.
    Kleynhans, Waldo
    Vaccari, Mattia
    Prescott, Matthew
    Becker, Burger
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (01) : 292 - 311
  • [8] Chen Z., 2022, P IEEE CVF C COMP VI, V969
  • [9] Comrie A., 2021, CARTA CUBE ANAL REND, DOI DOI 10.5281/ZENODO.49054592021ASCL.SOFT03031C
  • [10] Cutri R. M., 2013, VizieR Online Data Catalog, VII/328