Predicting anticancer drug sensitivity on distributed data sources using federated deep learning

被引:0
作者
Xu, Xiaolu [1 ]
Qi, Zitong [2 ]
Han, Xiumei [3 ]
Xu, Aiguo [4 ]
Geng, Zhaohong [5 ]
He, Xinyu [1 ]
Ren, Yonggong [1 ]
Duo, Zhaojun [1 ]
机构
[1] Liaoning Normal Univ, Sch Comp Sci & Artificial Intelligence, Dalian 116029, Peoples R China
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[3] Dalian Maritime Univ, Coll Artificial Intelligence, Dalian 116026, Peoples R China
[4] Second Peoples Hosp Lianyungang, Dept Pathol, Lianyungang 222023, Peoples R China
[5] Dalian Med Univ, Affiliated Hosp 2, Dept Cardiol, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; Deep learning; Multi-class focal loss; Drug sensitivity prediction; Gene expression;
D O I
10.1016/j.heliyon.2023.e18615
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drug sensitivity prediction plays a crucial role in precision cancer therapy. Collaboration among medical institutions can lead to better performance in drug sensitivity prediction. However, patient privacy and data protection regulation remain a severe impediment to centralized prediction studies. For the first time, we proposed a federated drug sensitivity prediction model with high generalization, combining distributed data sources while protecting private data. Cell lines are first classified into three categories using the waterfall method. Focal loss for solving class imbalance is then embedded into the horizontal federated deep learning framework, i.e., HFDL-fl is presented. Applying HFDL-fl to homogeneous and heterogeneous data, we obtained HFDL-Cross and HFDL-Within. Our comprehensive experiments demonstrated that (i) collaboration by HFDL-fl outperforms private model on local data, (ii) focal loss function can effectively improve model performance to classify cell lines in sensitive and resistant categories, and (iii) HFDL-fl is not significantly affected by data heterogeneity. To summarize, HFDL-fl provides a valuable solution to break down the barriers between medical institutions for privacy-preserving drug sensitivity prediction and therefore facilitates the development of cancer precision medicine and other privacy-related biomedical research.
引用
收藏
页数:13
相关论文
共 37 条
  • [1] Network-based drug sensitivity prediction
    Ahmed, Khandakar Tanvir
    Park, Sunho
    Jiang, Qibing
    Yeu, Yunku
    Hwang, TaeHyun
    Zhang, Wei
    [J]. BMC MEDICAL GENOMICS, 2020, 13 (Suppl 11)
  • [2] Privacy-preserving techniques of genomic data-a survey
    Al Aziz, Md Momin
    Sadat, Md Nazmus
    Alhadidi, Dima
    Wang, Shuang
    Jiang, Xiaoqian
    Brown, Cheryl L.
    Mohammed, Noman
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (03) : 887 - 895
  • [3] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607
  • [4] A survey and systematic assessment of computational methods for drug response prediction
    Chen, Jinyu
    Zhang, Louxin
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (01) : 232 - 246
  • [5] FL-QSAR: a federated learning-based QSAR prototype for collaborative drug discovery
    Chen, Shaoqi
    Xue, Dongyu
    Chuai, Guohui
    Yang, Qiang
    Liu, Qi
    [J]. BIOINFORMATICS, 2020, 36 (22-23) : 5492 - 5498
  • [6] Federated learning for predicting clinical outcomes in patients with COVID-19
    Dayan, Ittai
    Roth, Holger R.
    Zhong, Aoxiao
    Harouni, Ahmed
    Gentili, Amilcare
    Abidin, Anas Z.
    Liu, Andrew
    Costa, Anthony Beardsworth
    Wood, Bradford J.
    Tsai, Chien-Sung
    Wang, Chih-Hung
    Hsu, Chun-Nan
    Lee, C. K.
    Ruan, Peiying
    Xu, Daguang
    Wu, Dufan
    Huang, Eddie
    Kitamura, Felipe Campos
    Lacey, Griffin
    de Antonio Corradi, Gustavo Cesar
    Nino, Gustavo
    Shin, Hao-Hsin
    Obinata, Hirofumi
    Ren, Hui
    Crane, Jason C.
    Tetreault, Jesse
    Guan, Jiahui
    Garrett, John W.
    Kaggie, Joshua D.
    Park, Jung Gil
    Dreyer, Keith
    Juluru, Krishna
    Kersten, Kristopher
    Rockenbach, Marcio Aloisio Bezerra Cavalcanti
    Linguraru, Marius George
    Haider, Masoom A.
    AbdelMaseeh, Meena
    Rieke, Nicola
    Damasceno, Pablo F.
    Silva, Pedro Mario Cruz E.
    Wang, Pochuan
    Xu, Sheng
    Kawano, Shuichi
    Sriswasdi, Sira
    Park, Soo Young
    Grist, Thomas M.
    Buch, Varun
    Jantarabenjakul, Watsamon
    Wang, Weichung
    Tak, Won Young
    [J]. NATURE MEDICINE, 2021, 27 (10) : 1735 - +
  • [7] Calibrating noise to sensitivity in private data analysis
    Dwork, Cynthia
    McSherry, Frank
    Nissim, Kobbi
    Smith, Adam
    [J]. THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2006, 3876 : 265 - 284
  • [8] The Algorithmic Foundations of Differential Privacy
    Dwork, Cynthia
    Roth, Aaron
    [J]. FOUNDATIONS AND TRENDS IN THEORETICAL COMPUTER SCIENCE, 2013, 9 (3-4): : 211 - 406
  • [9] An introduction to ROC analysis
    Fawcett, Tom
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 861 - 874
  • [10] Inconsistency in large pharmacogenomic studies
    Haibe-Kains, Benjamin
    El-Hachem, Nehme
    Birkbak, Nicolai Juul
    Jin, Andrew C.
    Beck, Andrew H.
    Aerts, Hugo J. W. L.
    Quackenbush, John
    [J]. NATURE, 2013, 504 (7480) : 389 - +