Genomic characterization of Alphacoronavirus from Mops condylurus bats in Nigeria

被引:0
作者
George, Uwem [1 ,2 ]
George, Oluwadamilola [3 ]
Oguzie, Judith [1 ,2 ]
Osasona, Oluwadamilola [1 ,2 ]
Motayo, Babatunde [4 ]
Kamani, Joshua [5 ]
Eromon, Philomena [1 ]
Folarin, Onikepe [1 ,2 ]
Happi, Anise [1 ]
Komolafe, Isaac [2 ]
Happi, Christian [1 ,2 ]
机构
[1] Redeemers Univ, African Ctr Excellence Genom Infect Dis, Ede, Osun, Nigeria
[2] Redeemers Univ, Fac Nat Sci, Dept Biol Sci, Ede, Osun, Nigeria
[3] Natl Vet Res Inst, Vom, Plateau, Nigeria
[4] Fed Med Ctr, Dept Med Microbiol, Abeokuta, Nigeria
[5] Natl Vet Res Inst NVRI PMB 01, Parasitol Div, Vom, Plateau, Nigeria
基金
英国惠康基金;
关键词
Alphacoronavirus; Nigeria; Molossidae; Metagenomics; Recombination; RESPIRATORY-SYNDROME CORONAVIRUS; GENETIC-RECOMBINATION; MOLECULAR-BIOLOGY; SARS-COV; PROTEIN; SEQUENCE; EPIDEMIOLOGY; PATHOGENESIS; SELECTION; TARGET;
D O I
10.1016/j.virusres.2023.199174
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Coronaviruses (CoVs) are responsible for sporadic, epidemic and pandemic respiratory diseases worldwide. Bats have been identified as the reservoir for CoVs. To increase the number of complete coronavirus genomes in Africa and to comprehend the molecular epidemiology of bat Alphacoronaviruses (AlphaCoVs), we used deep metagenomics shotgun sequencing to obtain three (3) near-complete genomes of AlphaCoVs from Mops condylurus (Angolan free-tailed) bat in Nigeria. Phylogenetic and pairwise identity analysis of open reading frame 1ab (ORF1ab), spike (S), envelope (E), membrane (M) and nucleocapsid (N) genes of AlphaCoV in this study to previously described AlphaCoVs subgenera showed that the Nigerian AlphaCoVs may be members of potentially unique AlphaCoV subgenera circulating exclusively in bats in the Molossidae bat family. Recombination events were detected, suggesting the evolution of AlphaCoVs within the Molossidae family. The pairwise identity of the S gene in this study and previously published S gene sequences of other AlphaCoVs indicate that the Nigerian strains may have a genetically unique spike protein that is distantly related to other AlphaCoVs. Variations involving non-polar to polar amino acid substitution in both the Heptad Repeat (HR) regions 1 and 2 were observed. Further monitoring of bats to understand the host receptor use requirements of CoVs and interspecies CoV transmission in Africa is necessary to identify and prevent the potential danger that bat CoVs pose to public health.
引用
收藏
页数:10
相关论文
共 66 条
  • [1] Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology
    Berry, Jody D.
    Hay, Kevin
    Rini, James M.
    Yu, Meng
    Wang, Linfa
    Plummer, Francis A.
    Corbett, Cindi R.
    Andonov, Anton
    [J]. MABS, 2010, 2 (01) : 53 - 66
  • [2] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120
  • [3] Coronavirus escape from heptad repeat 2 (HR2)-derived peptide entry inhibition as a result of mutations in the HR1 domain of the spike fusion protein
    Bosch, Berend Jan
    Rossen, John W. A.
    Bartelink, Willem
    Zuurveen, Stephanie J.
    de Haan, Cornelis A. M.
    Duquerroy, Stephane
    Boucher, Charles A. B.
    Rottier, Peter J. M.
    [J]. JOURNAL OF VIROLOGY, 2008, 82 (05) : 2580 - 2585
  • [4] BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis
    Bouckaert, Remco
    Vaughan, Timothy G.
    Barido-Sottani, Joelle
    Duchene, Sebastian
    Fourment, Mathieu
    Gavryushkina, Alexandra
    Heled, Joseph
    Jones, Graham
    Kuehnert, Denise
    De Maio, Nicola
    Matschiner, Michael
    Mendes, Fabio K.
    Mueller, Nicola F.
    Ogilvie, Huw A.
    du Plessis, Louis
    Popinga, Alex
    Rambaut, Andrew
    Rasmussen, David
    Siveroni, Igor
    Suchard, Marc A.
    Wu, Chieh-Hsi
    Xie, Dong
    Zhang, Chi
    Stadler, Tanja
    Drummond, Alexei J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (04)
  • [5] Phylogenetic reconstruction of the initial stages of the spread of the SARS-CoV-2 virus in the Eurasian and American continents by analyzing genomic data
    Bukin, Yu. S.
    Bondaryuk, A. N.
    Kulakova, N. V.
    Balakhonov, S. V.
    Dzhioev, Y. P.
    Zlobin, V. I.
    [J]. VIRUS RESEARCH, 2021, 305
  • [6] Computational Inference of Selection Underlying the Evolution of the Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2
    Cagliani, Rachele
    Forni, Diego
    Clerici, Mario
    Sironi, Manuela
    [J]. JOURNAL OF VIROLOGY, 2020, 94 (12)
  • [7] High speed BLASTN: an accelerated MegaBLAST search tool
    Chen, Ying
    Ye, Weicai
    Zhang, Yongdong
    Xu, Yuesheng
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (16) : 7762 - 7768
  • [8] Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China
    Chiu, SS
    Chan, KH
    Chu, KW
    Kwan, SW
    Guan, Y
    Poon, LLM
    Peiris, JSM
    [J]. CLINICAL INFECTIOUS DISEASES, 2005, 40 (12) : 1721 - 1729
  • [9] Origin and evolution of pathogenic coronaviruses
    Cui, Jie
    Li, Fang
    Shi, Zheng-Li
    [J]. NATURE REVIEWS MICROBIOLOGY, 2019, 17 (03) : 181 - 192
  • [10] Conserved recombination patterns across coronavirus subgenera
    de Klerk, Arne
    Swanepoel, Phillip
    Lourens, Rentia
    Zondo, Mpumelelo
    Abodunran, Isaac
    Lytras, Spyros
    MacLean, Oscar A.
    Robertson, David
    Kosakovsky Pond, Sergei L.
    Zehr, Jordan D.
    Kumar, Venkatesh
    Stanhope, Michael J.
    Harkins, Gordon
    Murrell, Ben
    Martin, Darren P.
    [J]. VIRUS EVOLUTION, 2022, 8 (02)