A real spatial-temporal attention denoising network for nugget quality detection in resistance spot weld

被引:3
作者
Zhou, Jie [1 ]
Xi, Zerui [1 ]
Wang, Shilong [1 ]
Yang, Bo [1 ]
Zhang, Youhong [2 ]
Zhang, Yucheng [3 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[2] Seres Grp Co Ltd, Chongqing 401335, Peoples R China
[3] Chongqing Seres New Energy Automobile Design Inst, Chongqing 401133, Peoples R China
基金
中国国家自然科学基金;
关键词
Resistance spot welding; Welded nugget quality; Deep learning; Attention mechanism; Vibration excitation response signal analysis; CONVOLUTIONAL NEURAL-NETWORK; FAULT-DIAGNOSIS; VIBRATION; JOINTS; SIGNAL;
D O I
10.1007/s10845-023-02160-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Resistance spot welding is an important process in the production of body-in-white. The quality of the welded nugget affects the safety performance of the whole vehicle. Currently, the quality of the welded nugget is mainly inspected manually, which is labor-intensive and inefficient. Therefore, this paper explores a new method to automatically and efficiently detect the quality of welded nugget by analyzing the vibration excitation response signal of the welded joint. In response to the characteristics of large volume, significant noise, and small discriminability of raw signals, we constructed a deep learning model named Real Spatial-temporal Attention Denoising Network (RSTADN), which consists of a denoising module, spatial-temporal attention modules, and multiple residual modules. The denoising module uses global absolute average pooling (GAAP) to maximize the retention of the original signal characteristics while aggregating global information from each channel. It generates appropriate soft thresholds to eliminate noise and enhance the feature recognition ability of the model. The spatial-temporal attention modules delve into the spatiotemporal correlation features of the signal from different perspectives, including real spatial scale, short-term dependency, and global temporal interaction, to enhance the model's feature extraction ability. Multiple residual modules further extract signal features to achieve precise alignment between features and nugget quality states. The experimental results indicate that the accuracy of RSTADN in the task of detecting the quality of welded nugget reaches as high as 94.35%, which is at least 1.31% higher than that of existing models.
引用
收藏
页码:2743 / 2764
页数:22
相关论文
共 50 条
  • [21] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    [J]. IEEE ACCESS, 2021, 9 : 8581 - 8594
  • [22] Recurrent attention network using spatial-temporal relations for action recognition
    Zhang, Mingxing
    Yang, Yang
    Ji, Yanli
    Xie, Ning
    Shen, Fumin
    [J]. SIGNAL PROCESSING, 2018, 145 : 137 - 145
  • [23] Spatial-temporal attention network for multistep-ahead forecasting of chlorophyll
    He, Xiaoyu
    Shi, Suixiang
    Geng, Xiulin
    Xu, Lingyu
    Zhang, Xiaolin
    [J]. APPLIED INTELLIGENCE, 2021, 51 (07) : 4381 - 4393
  • [24] Compression loss-based spatial-temporal attention module for compressed video quality enhancement
    He, Huiguo
    Chao, Hongyang
    Yin, Jian
    [J]. NEUROCOMPUTING, 2022, 501 : 75 - 87
  • [25] Spatial-Temporal Attention-Convolution Network for Citywide Cellular Traffic Prediction
    Zhao, Nan
    Ye, Zhiyang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    [J]. IEEE COMMUNICATIONS LETTERS, 2020, 24 (11) : 2532 - 2536
  • [26] ASTGSleep: Attention-Based Spatial-Temporal Graph Network for Sleep Staging
    Chen, Xiaoyu
    Zhang, Yiyuan
    Chen, Qiangqiang
    Zhou, Ligang
    Chen, Hongyu
    Wu, Huijuan
    Xu, Yunxia
    Chen, Kun
    Yin, Bin
    Chen, Wei
    Chen, Chen
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [27] An effective spatial-temporal attention based neural network for traffic flow prediction
    Do, Loan N. N.
    Vu, Hai L.
    Vo, Bao Q.
    Liu, Zhiyuan
    Dinh Phung
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 108 : 12 - 28
  • [28] Dynamic Spatial-Temporal Self-Attention Network for Traffic Flow Prediction
    Wang, Dong
    Yang, Hongji
    Zhou, Hua
    [J]. FUTURE INTERNET, 2024, 16 (06)
  • [29] DSTAN: attention-enhanced dynamic spatial-temporal network for traffic forecasting
    Luo, Xunlian
    Zhu, Chunjiang
    Zhang, Detian
    Li, Qing
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2025, 28 (01):
  • [30] Capturing spatial-temporal correlations with Attention based Graph Convolutional Network for network traffic prediction
    Guo, Yingya
    Peng, Yufei
    Hao, Run
    Tang, Xiang
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2023, 220