On a generalization of the Wirtinger inequality and some its applications

被引:1
作者
Agamalieva, Latifa [1 ,2 ]
Gasimov, Yusif S. [1 ,2 ,3 ]
Napoles-Valdes, Juan E. [4 ,5 ]
机构
[1] Azerbaijan Univ, J Hajibeyli 71, AZ-1007 Baku, Azerbaijan
[2] Baku State Univ, Inst Phys Problems, Z Khalilov 23, AZ-1148 Baku, Azerbaijan
[3] Inst Math & Mech, ANAS, B Vahabzade 9, AZ-1148 Baku, Azerbaijan
[4] UNNE, FaCENA, Av Libertad 5450, RA-3400 Corrientes, Argentina
[5] UTN FRRE, French 414, RA-3500 Resistencia, Chaco, Argentina
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2023年 / 68卷 / 02期
关键词
Integral operator; fractional calculus; Wirtinger inequality; EQUATIONS; DEFINITION; DIFFUSION;
D O I
10.24193/subbmath.2023.2.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present generalized versions of the Wirtinger inequal-ity, which contains as particular cases many of the well-known versions of this classic isoperimetric inequality. Some applications and open problems are also presented in the work.
引用
收藏
页码:237 / 247
页数:11
相关论文
共 39 条
  • [1] [Anonymous], 2017, GEN HERMITE HADAMARD
  • [2] Wirtinger type inequalities via fractional integral operators
    Asliyuce, Serkan
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (01): : 35 - 42
  • [3] Atangana A., 2016, DERIVATIVE NEW PARAM, DOI DOI 10.1016/B978-0-08-100644-3.00002-7
  • [4] Aziz R., 2019, ADV MATH MODELS APPL, V4, P210
  • [5] Baleanu D., 2019, FRACT CALC APPL ANAL, V22
  • [6] On Fractional Operators and Their Classifications
    Baleanu, Dumitru
    Fernandez, Arran
    [J]. MATHEMATICS, 2019, 7 (09)
  • [7] INTEGRAL INEQUALITIES OF THE WIRTINGER TYPE
    BEESACK, PR
    [J]. DUKE MATHEMATICAL JOURNAL, 1958, 25 (03) : 477 - 498
  • [8] Cnotsignnar I., 2003, INT MATH J, V3, P1393
  • [9] A Review of Definitions for Fractional Derivatives and Integral
    de Oliveira, Edmundo Capelas
    Tenreiro Machado, Jose Antonio
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [10] Diaz J.B., 1967, VARIATIONS WIRTINGER, P79