Electronic Structure Optimization and Proton-Transfer Enhancement on Titanium Oxide-Supported Copper Nanoparticles for Enhanced Nitrogen Recycling from Nitrate-Contaminated Water

被引:36
作者
Liu, Zixun [1 ]
Shen, Fei [1 ]
Shi, Li [1 ]
Tong, Qiuwen [1 ]
Tang, Mu'e [1 ]
Li, Yiming [1 ]
Peng, Min [1 ]
Jiao, Zhaojie [1 ]
Jiang, Yan [1 ]
Ao, Liang [3 ,4 ]
Fu, Wenyang [1 ]
Lv, Xiaoshu [1 ]
Jiang, Guangming [1 ,3 ,4 ]
Hou, Li'an [2 ]
机构
[1] Chongqing Technol & Business Univ, Minist Educ, Engn Res Ctr Waste Oil Recovery Technol & Equipmen, Chongqing 400067, Peoples R China
[2] High Tech Inst Beijing, Beijing 100000, Peoples R China
[3] Chongqing Acad Ecoenvironm Sci, Chongqing 400700, Peoples R China
[4] Chongqing Inst Geol & Mineral Resources, Chongqing 400700, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrate reduction; Electrocatalysis; Copper; Electron deficiency; Nitrogen recycling; REDUCTION; ATOMS;
D O I
10.1021/acs.est.3c03431
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electrocatalytic reduction of nitrate to NH3 (NO3RR)on Cu offers sustainable NH3 production and nitrogen recyclingfrom nitrate-contaminated water. However, Cu affords limited NO3RRactivity owing to its unfavorable electronic state and the slow protontransfer on its surface, especially in neutral/alkaline media. Furthermore,although a synchronous "NO3RR and NH3 collection"system has been developed for nitrogen recycling from nitrate-ladenwater, no system is designed for natural water that generally containslow-concentration nitrate. Herein, we demonstrate that depositingCu nanoparticles on a TiO2 support enables the formationof electron-deficient Cu & delta;+ species (0 < & delta;& LE; 2), which are more active than Cu-0 in NO3RR. Furthermore,TiO2-Cu coupling induces local electric-field enhancementthat intensifies water adsorption/dissociation at the interface, acceleratingproton transfer for NO3RR on Cu. With the dual enhancements, TiO2-Cu delivers an NH3-N selectivity of 90.5%,mass activity of 41.4 mg-N h g(Cu) (-1), specificactivity of 377.8 mg-N h(-1) m(-2), and minimal Cu leaching (<25.4 & mu;g L-1) when treating 22.5 mg L-1 of NO3 (-)-N at -0.40 V, outperforming most of the reportedCu-based catalysts. A sequential NO3RR and NH3 collectionsystem based on TiO2-Cu was then proposed, whichcould recycle nitrogen from nitrate-contaminated water under a wideconcentration window of 22.5-112.5 mg L-1 at a rate of 209-630 mg(N) m(-2) h(-1). We also demonstrated this system could collect83.9% of nitrogen from NO3 (-)-N (19.3 mgL(-1)) in natural lake water. This work reported a robust NO3RR (electrocatalytic reductionof nitrate to NH3) catalyst and a sequential NO3RR andNH(3) collection system, which enabled efficient nitrogenrecycling from nitrates in natural water, even in a low concentration.
引用
收藏
页码:10117 / 10126
页数:10
相关论文
共 54 条
[1]   Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst [J].
Chen, Gao-Feng ;
Yuan, Yifei ;
Jiang, Haifeng ;
Ren, Shi-Yu ;
Ding, Liang-Xin ;
Ma, Lu ;
Wu, Tianpin ;
Lu, Jun ;
Wang, Haihui .
NATURE ENERGY, 2020, 5 (08) :605-613
[2]   Coordination Symmetry Breaking of Single-Atom Catalysts for Robust and Efficient Nitrate Electroreduction to Ammonia [J].
Cheng, Xue-Feng ;
He, Jing-Hui ;
Ji, Hao-Qing ;
Zhang, Hao-Yu ;
Cao, Qiang ;
Sun, Wu-Ji ;
Yan, Cheng-Lin ;
Lu, Jian-Mei .
ADVANCED MATERIALS, 2022, 34 (36)
[3]   Ethane-driven chromate and nitrate bioreductions in a membrane biofilm reactor [J].
Chi, Zifang ;
Ju, Shijie ;
Wang, Wenjing ;
Li, Huai ;
Luo, Yi-Hao ;
Rittmann, Bruce E. .
CHEMICAL ENGINEERING JOURNAL, 2023, 452
[4]   Electroreduction of Nitrates, Nitrites, and Gaseous Nitrogen Oxides: A Potential Source of Ammonia in Dinitrogen Reduction Studies [J].
Choi, Jaecheol ;
Du, Hoang-Long ;
Nguyen, Cuong Ky ;
Suryanto, Bryan H. R. ;
Simonov, Alexandr N. ;
MacFarlane, Douglas R. .
ACS ENERGY LETTERS, 2020, 5 (06) :2095-2097
[5]   Interfacial Water Enrichment and Reorientation on Pt/C Catalysts Induced by Metal Oxides Participation for Boosting the Hydrogen Evolution Reaction [J].
Deng, Mingming ;
Li, Mengting ;
Jiang, Shangkun ;
Nie, Yao ;
Li, Li ;
Wei, Zidong .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (04) :1069-1076
[6]   Atomically dispersed iron enables high-efficiency electrocatalytic conversion of nitrate to dinitrogen on a N-coordinated mesoporous carbon architecture [J].
Fan, Jianwei ;
Chen, Yanyan ;
Chen, Xiaoqian ;
Wu, Zhangxiong ;
Teng, Wei ;
Zhang, Wei-xian .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2023, 320
[7]   Outlining Key Perspectives for the Advancement of Electrocatalytic Remediation of Nitrate from Polluted Waters [J].
Flores, Kenneth ;
Cerron-Calle, Gabriel Antonio ;
Valdes, Carolina ;
Atrashkevich, Aksana ;
Castillo, Alexandria ;
Morales, Helia ;
Parsons, Jason G. ;
Garcia-Segura, Sergi ;
Gardea-Torresdey, Jorge L. .
ACS ES&T ENGINEERING, 2022, 2 (05) :746-768
[8]   Electrocatalytic nitrate reduction on bimetallic Palladium-Copper Nanowires: Key surface structure for selective dinitrogen formation [J].
Fu, Chunhong ;
Shu, Song ;
Hu, Lin ;
Liu, Zixun ;
Yin, Zhouyang ;
Lv, Xiaoshu ;
Zhang, Sen ;
Jiang, Guangming .
CHEMICAL ENGINEERING JOURNAL, 2022, 435
[9]   Building dual active sites Co3O4/Cu electrode to break scaling relations for enhancement of electrochemical reduction of nitrate to high-value ammonia [J].
Fu, Wenyang ;
Hu, Zhongzheng ;
Du, Yingying ;
Su, Pei ;
Su, Yi ;
Zhang, Qizhan ;
Zhou, Minghua .
JOURNAL OF HAZARDOUS MATERIALS, 2022, 434
[10]   Electrocatalytic Upcycling of Nitrate Wastewater into an Ammonia Fertilizer via an Electrified Membrane [J].
Gao, Jianan ;
Shi, Ning ;
Li, Yifan ;
Jiang, Bo ;
Marhaba, Taha ;
Zhang, Wen .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (16) :11602-11613