Deep-Learning-Based Segmentation of Extraocular Muscles from Magnetic Resonance Images

被引:2
作者
Qureshi, Amad [1 ]
Lim, Seongjin [2 ]
Suh, Soh Youn [2 ]
Mutawak, Bassam [1 ]
Chitnis, Parag V. [1 ]
Demer, Joseph L. [2 ]
Wei, Qi [1 ]
机构
[1] George Mason Univ, Dept Bioengn, Fairfax, VA 22030 USA
[2] Univ Calif Los Angeles, Jules Stein Eye Inst, Dept Ophthalmol Neurol & Bioengn, Los Angeles, CA 90095 USA
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 06期
关键词
deep learning; extraocular muscle; segmentation; MRI; strabismus; ophthalmology;
D O I
10.3390/bioengineering10060699
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study, we investigated the performance of four deep learning frameworks of U-Net, U-NeXt, DeepLabV3+, and ConResNet in multi-class pixel-based segmentation of the extraocular muscles (EOMs) from coronal MRI. Performances of the four models were evaluated and compared with the standard F-measure-based metrics of intersection over union (IoU) and Dice, where the U-Net achieved the highest overall IoU and Dice scores of 0.77 and 0.85, respectively. Centroid distance offset between identified and ground truth EOM centroids was measured where U-Net and DeepLabV3+ achieved low offsets (p > 0.05) of 0.33 mm and 0.35 mm, respectively. Our results also demonstrated that segmentation accuracy varies in spatially different image planes. This study systematically compared factors that impact the variability of segmentation and morphometric accuracy of the deep learning models when applied to segmenting EOMs from MRI.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A Parallel Segmentation of Brain Tumor from Magnetic Resonance Images
    Dessai, Vidhya S.
    Arakeri, Megha P.
    Guddeti, Ram Mohana Reddy
    2012 THIRD INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION & NETWORKING TECHNOLOGIES (ICCCNT), 2012,
  • [42] Towards Left Ventricle Segmentation From Magnetic Resonance Images
    Dakua, Sarada Prasad
    IEEE SENSORS JOURNAL, 2017, 17 (18) : 5971 - 5981
  • [43] Traffic Analysis Through Deep-Learning-Based Image Segmentation From UAV Streaming
    Bisio, Igor
    Garibotto, Chiara
    Haleem, Halar
    Lavagetto, Fabio
    Sciarrone, Andrea
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (07) : 6059 - 6073
  • [44] Generation of quantification maps and weighted images from synthetic magnetic resonance imaging using deep learning network
    Liu, Yawen
    Niu, Haijun
    Ren, Pengling
    Ren, Jialiang
    Wei, Xuan
    Liu, Wenjuan
    Ding, Heyu
    Li, Jing
    Xia, Jingjing
    Zhang, Tingting
    Lv, Han
    Yin, Hongxia
    Wang, Zhenchang
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (02)
  • [45] Deep learning automatic semantic segmentation of glioblastoma multiforme regions on multimodal magnetic resonance images
    Beser-Robles, Maria
    Castella-Malonda, Jaime
    Martinez-Girones, Pedro Miguel
    Galiana-Bordera, Adrian
    Ferrer-Lozano, Jaime
    Ribas-Despuig, Gloria
    Teruel-Coll, Regina
    Cerda-Alberich, Leonor
    Marti-Bonmati, Luis
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2024, 19 (09) : 1743 - 1751
  • [46] A systematic review of deep learning methods for the classification and segmentation of prostate cancer on magnetic resonance images
    Nayagam, R. Deiva
    Selvathi, D.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (02)
  • [47] Deep-Learning-Based Automated Neuron Reconstruction From 3D Microscopy Images Using Synthetic Training Images
    Chen, Weixun
    Liu, Min
    Du, Hao
    Radojevic, Miroslav
    Wang, Yaonan
    Meijering, Erik
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (05) : 1031 - 1042
  • [48] A Deep Learning Approach for the Automatic Detection and Segmentation in Autosomal Dominant Polycystic Kidney Disease Based on Magnetic Resonance Images
    Bevilacqua, Vitoantonio
    Brunetti, Antonio
    Cascarano, Giacomo Donato
    Palmieri, Flavio
    Guerriero, Andrea
    Moschetta, Marco
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT II, 2018, 10955 : 643 - 649
  • [49] Deep-Learning-based Segmentation of Organs-at-Risk in the Head for MR-assisted Radiation Therapy Planning
    Rusko, Laszlo
    Capala, Marta E.
    Czipczer, Vanda
    Kolozsvari, Bernadett
    Deak-Karancsi, Borbala
    Czabany, Renata
    Gyalai, Bence
    Tan, Tao
    Vegvary, Zoltan
    Borzasi, Emoke
    Egyud, Zsofia
    Koszo, Renata
    Paczona, Viktor
    Fodor, Emese
    Bobb, Chad
    Cozzini, Cristina
    Kaushik, Sandeep
    Darazs, Barbara
    Verduijn, Gerda M.
    Pearson, Rachel
    Maxwell, Ross
    Mccallum, Hazel
    Tamames, Juan A. Hernandez
    Hideghety, Katalin
    Petit, Steven F.
    Wiesinger, Florian
    BIOIMAGING: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL. 2: BIOIMAGING, 2021, : 31 - 43
  • [50] Deep Learning-Based Corpus Callosum Segmentation from Brain Images: A Review
    Sarma, Padmanabha
    Saranya, G.
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 138 (02) : 685 - 700