Deep-Learning-Based Segmentation of Extraocular Muscles from Magnetic Resonance Images

被引:2
作者
Qureshi, Amad [1 ]
Lim, Seongjin [2 ]
Suh, Soh Youn [2 ]
Mutawak, Bassam [1 ]
Chitnis, Parag V. [1 ]
Demer, Joseph L. [2 ]
Wei, Qi [1 ]
机构
[1] George Mason Univ, Dept Bioengn, Fairfax, VA 22030 USA
[2] Univ Calif Los Angeles, Jules Stein Eye Inst, Dept Ophthalmol Neurol & Bioengn, Los Angeles, CA 90095 USA
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 06期
关键词
deep learning; extraocular muscle; segmentation; MRI; strabismus; ophthalmology;
D O I
10.3390/bioengineering10060699
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study, we investigated the performance of four deep learning frameworks of U-Net, U-NeXt, DeepLabV3+, and ConResNet in multi-class pixel-based segmentation of the extraocular muscles (EOMs) from coronal MRI. Performances of the four models were evaluated and compared with the standard F-measure-based metrics of intersection over union (IoU) and Dice, where the U-Net achieved the highest overall IoU and Dice scores of 0.77 and 0.85, respectively. Centroid distance offset between identified and ground truth EOM centroids was measured where U-Net and DeepLabV3+ achieved low offsets (p > 0.05) of 0.33 mm and 0.35 mm, respectively. Our results also demonstrated that segmentation accuracy varies in spatially different image planes. This study systematically compared factors that impact the variability of segmentation and morphometric accuracy of the deep learning models when applied to segmenting EOMs from MRI.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Deep-Learning-Based Thrombus Localization and Segmentation in Patients with Posterior Circulation Stroke
    Zoetmulder, Riaan
    Bruggeman, Agnetha A. E.
    Isgum, Ivana
    Gavves, Efstratios
    Majoie, Charles B. L. M.
    Beenen, Ludo F. M.
    Dippel, Diederik W. J.
    Boodt, Nikkie
    den Hartog, Sanne J.
    van Doormaal, Pieter J.
    Cornelissen, Sandra A. P.
    Roos, Yvo B. W. E. M.
    Brouwer, Josje
    Schonewille, Wouter J.
    Pirson, Anne F. V.
    van Zwam, Wim H.
    van der Leij, Christiaan
    Brans, Rutger J. B.
    van Es, Adriaan C. G. M.
    Marquering, Henk A.
    DIAGNOSTICS, 2022, 12 (06)
  • [32] Simultaneous brain structure segmentation in magnetic resonance images using deep convolutional neural networks
    Tomoko Maruyama
    Norio Hayashi
    Yusuke Sato
    Toshihiro Ogura
    Masumi Uehara
    Akio Ogura
    Haruyuki Watanabe
    Yoshihiro Kitoh
    Radiological Physics and Technology, 2021, 14 : 358 - 365
  • [33] Simultaneous brain structure segmentation in magnetic resonance images using deep convolutional neural networks
    Maruyama, Tomoko
    Hayashi, Norio
    Sato, Yusuke
    Ogura, Toshihiro
    Uehara, Masumi
    Ogura, Akio
    Watanabe, Haruyuki
    Kitoh, Yoshihiro
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2021, 14 (04) : 358 - 365
  • [34] Segmentation of brain lesions from CT images based on deep learning techniques
    Gao, Xiaohong
    Qian, Yu
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [35] Deep-Learning-Based Automatic Mineral Grain Segmentation and Recognition
    Latif, Ghazanfar
    Bouchard, Kevin
    Maitre, Julien
    Back, Arnaud
    Bedard, Leo Paul
    MINERALS, 2022, 12 (04)
  • [36] Fatty infiltration of extraocular muscles on magnetic resonance imaging
    Rana, Khizar
    Tiwari, Shubham
    Seto, Liwen
    Kraczkowska, Amber
    Patel, Sandy
    To, Minh-Son
    Selva, Dinesh
    ORBIT-THE INTERNATIONAL JOURNAL ON ORBITAL DISORDERS-OCULOPLASTIC AND LACRIMAL SURGERY, 2025, 44 (02): : 145 - 149
  • [37] A Review of Deep-Learning-Based Medical Image Segmentation Methods
    Liu, Xiangbin
    Song, Liping
    Liu, Shuai
    Zhang, Yudong
    SUSTAINABILITY, 2021, 13 (03) : 1 - 29
  • [38] Deep-Learning-Based Point Cloud Semantic Segmentation: A Survey
    Zhang, Rui
    Wu, Yichao
    Jin, Wei
    Meng, Xiaoman
    ELECTRONICS, 2023, 12 (17)
  • [39] Deep-Learning-Based Neural Tissue Segmentation of MRI in Multiple Sclerosis: Effect of Training Set Size
    Narayana, Ponnada A.
    Coronado, Ivan
    Sujit, Sheeba J.
    Wolinsky, Jerry S.
    Lublin, Fred D.
    Gabr, Refaat E.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (05) : 1487 - 1496
  • [40] An Overview of Deep-Learning-Based Methods for Cardiovascular Risk Assessment with Retinal Images
    Barriada, Ruben G.
    Masip, David
    DIAGNOSTICS, 2023, 13 (01)