Machine learning modeling and prognostic value analysis of invasion-related genes in cutaneous melanoma

被引:11
作者
Yang, Enyu [1 ]
Ding, Qianyun [2 ]
Fan, Xiaowei [1 ]
Ye, Haihan [1 ]
Xuan, Cheng [1 ]
Zhao, Shuo [1 ]
Ji, Qing [3 ]
Yu, Weihua [4 ]
Liu, Yongfu [5 ]
Cao, Jun [3 ]
Fang, Meiyu [3 ]
Ding, Xianfeng [1 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Life Sci & Med, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ, Childrens Hosp, Natl Clin Res Ctr Child Hlth, Dept A,Sch Med, Hangzhou 310003, Peoples R China
[3] Chinese Acad Sci, Zhejiang Canc Hosp, Hangzhou Inst Med HIM, Dept Head & Neck & Rare Oncol,Key Lab Head & Neck, Hangzhou 310022, Peoples R China
[4] Zhejiang Univ, Sch Med, Affiliated Hosp 4, Dept Gastroenterol, Yiwu 322000, Peoples R China
[5] Zhengzhou Univ, Affiliated Hosp 1, Dept Emergency, Zhengzhou 450052, Peoples R China
关键词
Skin cutaneous melanoma; Invasion-associated genes; Risk score; Nomogram; Prognosis; Machine learning; METASTATIC MELANOMA; MALIGNANT-MELANOMA; TUMOR PROGRESSION; BLADDER-CANCER; UNITED-STATES; CELLS; TRANSITION; MYRICETIN; PROSTATE; SURVIVAL;
D O I
10.1016/j.compbiomed.2023.107089
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we aimed to develop an invasion-related risk signature and prognostic model for personalized treatment and prognosis prediction in skin cutaneous melanoma (SKCM), as invasion plays a crucial role in this disease. We identified 124 differentially expressed invasion-associated genes (DE-IAGs) and selected 20 prognostic genes (TTYH3, NME1, ORC1, PLK1, MYO10, SPINT1, NUPR1, SERPINE2, HLA-DQB2, METTL7B, TIMP1, NOX4, DBI, ARL15, APOBEC3G, ARRB2, DRAM1, RNF213, C14orf28, and CPEB3) using Cox and LASSO regression to establish a risk score. Gene expression was validated through single-cell sequencing, protein expression, and transcriptome analysis. Negative correlations were discovered between risk score, immune score, and stromal score using ESTIMATE and CIBERSORT algorithms. High- and low-risk groups exhibited significant differences in immune cell infiltration and checkpoint molecule expression. The 20 prognostic genes effectively differentiated between SKCM and normal samples (AUCs >0.7). We identified 234 drugs targeting 6 genes from the DGIdb database. Our study provides potential biomarkers and a risk signature for personalized treatment and prognosis prediction in SKCM patients. We developed a nomogram and machine-learning prognostic model to predict 1-, 3-, and 5-year overall survival (OS) using risk signature and clinical factors. The best model, Extra Trees Classifier (AUC = 0.88), was derived from pycaret's comparison of 15 classifiers. The pipeline and app are accessible at https://github.com/EnyuY/IAGs-in-SKCM.
引用
收藏
页数:13
相关论文
共 53 条
[21]   Targeted agents and immunotherapies: optimizing outcomes in melanoma [J].
Luke, Jason J. ;
Flaherty, Keith T. ;
Ribas, Antoni ;
Long, Georgina V. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (08) :463-482
[22]   Effects of several polyhydroxylated flavonoids on the growth of B16F10 melanoma and Melan-a melanocyte cell lines:: influence of the sequential oxidation state of the flavonoid skeleton [J].
Martínez, C ;
Yàñez, J ;
Vicente, V ;
Alcaraz, M ;
Benavente-García, O ;
Castillo, J ;
Lorente, J ;
Lozano, JA .
MELANOMA RESEARCH, 2003, 13 (01) :3-9
[23]   Changes in the number of CD80+, CD86+, and CD28+ peripheral blood lymphocytes have prognostic value in melanoma patients [J].
Martínez-Escribano, JA ;
Hernández-Caselles, T ;
Campillo, JA ;
Campos, M ;
Frías, JF ;
García-Alonso, A ;
Alvarez-López, MR .
HUMAN IMMUNOLOGY, 2003, 64 (08) :796-801
[24]   A slow-cycling subpopulation of melanoma cells with highly invasive properties [J].
Perego, M. ;
Maurer, M. ;
Wang, J. X. ;
Shaffer, S. ;
Mueller, A. C. ;
Parapatics, K. ;
Li, L. ;
Hristova, D. ;
Shin, S. ;
Keeney, F. ;
Liu, S. ;
Xu, X. ;
Raj, A. ;
Jensen, J. K. ;
Bennett, K. L. ;
Wagner, S. N. ;
Somasundaram, R. ;
Herlyn, M. .
ONCOGENE, 2018, 37 (03) :302-312
[25]   Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells [J].
Ramskold, Daniel ;
Luo, Shujun ;
Wang, Yu-Chieh ;
Li, Robin ;
Deng, Qiaolin ;
Faridani, Omid R. ;
Daniels, Gregory A. ;
Khrebtukova, Irina ;
Loring, Jeanne F. ;
Laurent, Louise C. ;
Schroth, Gary P. ;
Sandberg, Rickard .
NATURE BIOTECHNOLOGY, 2012, 30 (08) :777-782
[26]   Transcriptome Profiling Identifies HMGA2 as a Biomarker of Melanoma Progression and Prognosis [J].
Raskin, Leon ;
Fullen, Douglas R. ;
Giordano, Thomas J. ;
Thomas, Dafydd G. ;
Frohm, Marcus L. ;
Cha, Kelly B. ;
Ahn, Jaeil ;
Mukherjee, Bhramar ;
Johnson, Timothy M. ;
Gruber, Stephen B. .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2013, 133 (11) :2585-2592
[27]   RedoxModulation of FAK Controls Melanoma Survival - Role of NOX4 [J].
Ribeiro-Pereira, Cristiane ;
Moraes, Joao Alfredo ;
Souza, Mariele de Jesus ;
Laurindo, Francisco R. ;
Arruda, Maria Augusta ;
Barja-Fidalgo, Christina .
PLOS ONE, 2014, 9 (06)
[28]   The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis [J].
Riker, Adam I. ;
Enkemann, Steven A. ;
Fodstad, Oystein ;
Liu, Suhu ;
Ren, Suping ;
Morris, Christopher ;
Xi, Yaguang ;
Howell, Paul ;
Metge, Brandon ;
Samant, Rajeev S. ;
Shevde, Lalita A. ;
Li, Wenbin ;
Eschrich, Steven ;
Daud, Adil ;
Ju, Jingfang ;
Matta, Jaime .
BMC MEDICAL GENOMICS, 2008, 1 (1)
[29]   limma powers differential expression analyses for RNA-sequencing and microarray studies [J].
Ritchie, Matthew E. ;
Phipson, Belinda ;
Wu, Di ;
Hu, Yifang ;
Law, Charity W. ;
Shi, Wei ;
Smyth, Gordon K. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (07) :e47
[30]   Long Non-coding RNA ZFPM2-AS1: A Novel Biomarker in the Pathogenesis of Human Cancers [J].
Sasa, Gabriel B. K. ;
Xuan, Cheng ;
Lyu, Guoliang ;
Ding, Xianfeng ;
Meiyu, Fang .
MOLECULAR BIOTECHNOLOGY, 2022, 64 (07) :725-742