The Influence of White Noise and the Beta Derivative on the Solutions of the BBM Equation

被引:11
作者
Al-Askar, Farah M. [1 ]
Cesarano, Clemente [2 ]
Mohammed, Wael W. [3 ,4 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Coll Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Univ Hail, Dept Math, Coll Sci, Hail 2440, Saudi Arabia
[4] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
stability by noise; exact solutions; F-expansion method; beta-derivative; stochastic BBM; NONLINEAR EVOLUTION; SOLITON-SOLUTIONS;
D O I
10.3390/axioms12050447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current study, we investigate the stochastic Benjamin-Bona-Mahony equation with beta derivative (SBBME-BD). The considered stochastic term is the multiplicative noise in the Ito sense. By combining the F-expansion approach with two separate equations, such as the Riccati and elliptic equations, new hyperbolic, trigonometric, rational, and Jacobi elliptic solutions for SBBME-BD can be generated. The solutions to the Benjamin-Bona-Mahony equation are useful in understanding various scientific phenomena, including Rossby waves in spinning fluids and drift waves in plasma. Our results are presented using MATLAB, with numerous 3D and 2D figures illustrating the impacts of white noise and the beta derivative on the obtained solutions of SBBME-BD.
引用
收藏
页数:12
相关论文
共 31 条
[21]  
Manafianheris J., 2012, INT J GENETIC ENG, V2, P28, DOI [10.5923/j.ijge.20120203.02, DOI 10.5923/J.IJGE.20120203.02]
[22]  
Mohammed W.W., 2015, J EGYPT MATH SOC, V23, P482, DOI [10.1016/j.joems.2014.10.005, DOI 10.1016/J.JOEMS.2014.10.005]
[23]   The Analytical Solutions of the Stochastic mKdV Equation via the Mapping Method [J].
Mohammed, Wael W. ;
Al-Askar, Farah M. ;
Cesarano, Clemente .
MATHEMATICS, 2022, 10 (22)
[24]   Fast-diffusion limit with large noise for systems of stochastic reaction-diffusion equations [J].
Mohammed, Wael W. ;
Bloemker, Dirk .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2016, 34 (06) :961-978
[25]   The soliton solutions for the (4+1)-dimensional stochastic Fokas equation [J].
Mohammed, Wael W. W. ;
Cesarano, Clemente .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) :7589-7597
[26]  
Samko G., 1993, FRACTIONAL INTEGRALS
[27]   Benjamin-Bona-Mahony (BBM) equation with variable coefficients: Similarity reductions and Painleve analysis [J].
Singh, K. ;
Gupta, R. K. ;
Kumar, Sachin .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (16) :7021-7027
[28]   Soliton solutions and conservation laws for lossy nonlinear transmission line equation [J].
Tchier, Fairouz ;
Yusuf, Abdullahi ;
Aliyu, Aliyu Isa ;
Inc, Mustafa .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 107 :320-336
[29]   Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey-Stewartson-type equation via a new method [J].
Yan, ZY .
CHAOS SOLITONS & FRACTALS, 2003, 18 (02) :299-309
[30]   Exact solitary wave solutions to the generalized Fisher equation [J].
Zhou, Qin ;
Ekici, M. ;
Sonmezoglu, A. ;
Manafian, J. ;
Khaleghizadeh, S. ;
Mirzazadeh, M. .
OPTIK, 2016, 127 (24) :12085-12092