The Influence of White Noise and the Beta Derivative on the Solutions of the BBM Equation

被引:11
作者
Al-Askar, Farah M. [1 ]
Cesarano, Clemente [2 ]
Mohammed, Wael W. [3 ,4 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Coll Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[3] Univ Hail, Dept Math, Coll Sci, Hail 2440, Saudi Arabia
[4] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
stability by noise; exact solutions; F-expansion method; beta-derivative; stochastic BBM; NONLINEAR EVOLUTION; SOLITON-SOLUTIONS;
D O I
10.3390/axioms12050447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current study, we investigate the stochastic Benjamin-Bona-Mahony equation with beta derivative (SBBME-BD). The considered stochastic term is the multiplicative noise in the Ito sense. By combining the F-expansion approach with two separate equations, such as the Riccati and elliptic equations, new hyperbolic, trigonometric, rational, and Jacobi elliptic solutions for SBBME-BD can be generated. The solutions to the Benjamin-Bona-Mahony equation are useful in understanding various scientific phenomena, including Rossby waves in spinning fluids and drift waves in plasma. Our results are presented using MATLAB, with numerous 3D and 2D figures illustrating the impacts of white noise and the beta derivative on the obtained solutions of SBBME-BD.
引用
收藏
页数:12
相关论文
共 31 条
[11]   Bifurcation of Exact Solutions for the Space-Fractional Stochastic Modified Benjamin-Bona-Mahony Equation [J].
Elmandouh, Adel ;
Fadhal, Emad .
FRACTAL AND FRACTIONAL, 2022, 6 (12)
[12]  
Gundogdu H., 2017, MATH MORAVICA, V21, P95, DOI [10.5937/MatMor1701095G, DOI 10.5937/MATMOR1701095G]
[13]  
Imkeller P., 2002, STOCH DYNAM, V2, P311, DOI DOI 10.1142/S0219493702000443
[14]   Improvement of the Exp-function method for solving the BBM equation with time-dependent coefficients [J].
Jahani, Maghsoud ;
Manafian, Jalil .
EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (03)
[15]  
Katugampola UN, 2014, BULL MATH ANAL APPL, V6, P1
[16]   New approach to a generalized fractional integral [J].
Katugampola, Udita N. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :860-865
[17]  
Kilbas A.A., 2006, THEORY APPL FRACTION, VVolume 204
[18]   The tanh method .1. Exact solutions of nonlinear evolution and wave equations [J].
Malfliet, W ;
Hereman, W .
PHYSICA SCRIPTA, 1996, 54 (06) :563-568
[19]   Optical soliton solutions for Schrodinger type nonlinear evolution equations by the tan(Φ(ξ)/2)-expansion method [J].
Manafian, Jalil .
OPTIK, 2016, 127 (10) :4222-4245
[20]   Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity [J].
Manafian, Jalil ;
Lakestani, Mehrdad .
EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (04) :1-12