Spacetime finite element methods for control problems subject to the wave equation

被引:3
|
作者
Burman, Erik [1 ]
Feizmohammadi, Ali [2 ]
Munch, Arnaud [3 ]
Oksanen, Lauri [4 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
[2] Univ Toronto, Dept Math, 3359 Mississauga Rd Deerfield Hall, Mississauga, ON L5L 1C6, Canada
[3] Univ Clermont Auvergne, Lab Math Blaise Pascal, CNRS, LMBP, F-63000 Clermont Ferrand, France
[4] Univ Helsinki, Dept Math & Stat, PO 68, Helsinki 00014, Finland
基金
英国工程与自然科学研究理事会;
关键词
Wave equation; control; finite element method; space time; stabilisation; BOUNDARY CONTROLLABILITY; NUMERICAL-METHOD; APPROXIMATION; STABILIZATION; INTERPOLATION;
D O I
10.1051/cocv/2023028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the null controllability problem for the wave equation, and analyse a stabilized finite element method formulated on a global, unstructured spacetime mesh. We prove error estimates for the approximate control given by the computational method. The proofs are based on the regularity properties of the control given by the Hilbert Uniqueness Method, together with the stability properties of the numerical scheme. Numerical experiments illustrate the results.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Space time stabilized finite element methods for a unique continuation problem subject to the wave equation
    Burman, Erik
    Feizmohammadi, Ali
    Muench, Arnaud
    Oksanen, Lauri
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S969 - S991
  • [2] Galerkin finite element methods for wave problems
    Sengupta, TK
    Talla, SB
    Pradhan, SC
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2005, 30 (5): : 611 - 623
  • [3] Galerkin finite element methods for wave problems
    T. K. Sengupta
    S. B. Talla
    S. C. Pradhan
    Sadhana, 2005, 30 : 611 - 623
  • [4] Stabilized Finite Element Methods for the Schrodinger Wave Equation
    Kannan, Raguraman
    Masud, Arif
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2009, 76 (02): : 1 - 7
  • [5] SPACE-TIME FINITE ELEMENT METHODS FOR DISTRIBUTED OPTIMAL CONTROL OF THE WAVE EQUATION
    Loscher, Richard
    Steinbach, Olaf
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (01) : 452 - 475
  • [6] Developing weak Galerkin finite element methods for the wave equation
    Huang, Yunqing
    Li, Jichun
    Li, Dan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (03) : 868 - 884
  • [7] An Error Analysis of Discontinuous Finite Element Methods for the Optimal Control Problems Governed by Stokes Equation
    Dond, Asha K.
    Gudi, Thirupathi
    Sau, Ramesh C. H.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (04) : 421 - 460
  • [8] Discontinuous finite element methods for acoustic and elastic wave problems
    Rivière, B
    Wheeler, MF
    CURRENT TRENDS IN SCIENTIFIC COMPUTING, 2003, 329 : 271 - 282
  • [9] Stabilized finite element methods and feedback control for Burgers' equation
    Atwell, JA
    King, BB
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 2745 - 2749
  • [10] FINITE-ELEMENT METHODS FOR A STRONGLY DAMPED WAVE-EQUATION
    LARSSON, S
    THOMEE, V
    WAHLBIN, LB
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (01) : 115 - 142