Organics and coliform removal from low strength domestic wastewater using integrated constructed wetland-microbial fuel cell reactor with bioelectricity generation

被引:9
|
作者
Biswas, Anjishnu [1 ]
Chakraborty, Saswati [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Civil Engn, Gauhati 781039, Assam, India
关键词
CW-MFC; Organic removal; Coliform removal; Redox potential; Power density; AZO-DYE; BACTERIA; WASTEWATERS; PERFORMANCE; COMMUNITY; CW;
D O I
10.1016/j.jclepro.2023.137204
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wastewater treatment with energy recovery is a major concern in environmental engineering research nowadays. The current study focuses on the removal of organics and fecal coliforms which are primary source of pollution in domestic wastewater, using three identical reactors. One vertical planted constructed wetland (R1), one planted CW-MFC (R2), and one unplanted CW-MFC (R3). Bioenergy production in R2 and R3 was also monitored. In terms of COD removal, R2 reactor achieved 93.13 +/- 4.83% efficiency, and R1 and R3 achieved 87.21 +/- 4.56% and 86.31 +/- 4.37% efficiencies, respectively. BOD removal efficiency in R1, R2, and R3 reactors were found to be similar around 91.79 +/- 3.58% to 92.7 +/- 3.3%. The total coliform removal was better in R1 (log 2.95) than in R2 (log 2.93). However, the fecal coliform removal in R2 was much higher (log 3.51) compared to R1 (log 2.94). Coliform and organic removal deteriorated during winter time, though electricity generation remained unaf-fected. The maximum open-circuit voltage in R2 was 886 mV and in the R3 was 487 mV during the complete study. Plants played a positive role in enhancing the electrical performance of R2 compared to unplanted R3 by increasing the redox potential. Presence of dissolved oxygen in the range of 1.97-2.1 mg/L was also detected near the rhizosphere of the planted reactors. Combined role of plants and electrodes was crucial for COD removal and anaerobic condition near anode with low ORP governed the pathogen removal from domestic wastewater.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Removal of nutrients and bioelectricity generation from institutional wastewater using constructed wetland-microbial fuel cell
    Angassa, Kenatu
    Getu, Tolesa
    Abewaa, Mikiyas
    RESULTS IN ENGINEERING, 2024, 24
  • [2] Influence of glass wool as separator on bioelectricity generation in a constructed wetland-microbial fuel cell
    Xu, Lei
    Zhao, Yaqian
    Tang, Cheng
    Doherty, Liam
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2018, 207 : 116 - 123
  • [3] Simultaneous removal of heavy metals and electricity generation from wastewater in constructed wetland-microbial fuel cells
    Kahrizi, Hoda
    Garmdareh, Seyyed Ebrahim Hashemi
    Abbassi, Rouzbeh
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 190 : 921 - 929
  • [4] Innovative pyrite-based constructed wetland-microbial fuel cell for enhancing nutrients removal and bioelectricity generation
    Zhu, Zhi-Wei
    Xu, Pei
    Yu, Li
    Huang, Xian-Huai
    Yang, Hou-Yun
    Li, Wei-Hua
    Zhang, Ping
    Chen, Jian
    Kong, Ling-Tao
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 55
  • [5] Organic matter removal and nitrogen transformation by a constructed wetland-microbial fuel cell system with simultaneous bioelectricity generation
    Gonzalez, Thais
    Puigagut, Jaume
    Vidal, Gladys
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 753
  • [6] Coupling iron pretreatment with a constructed wetland-microbial fuel cell to improve wastewater purification and bioelectricity generation
    Xu, Fei
    Zhu, Ya-jie
    Wang, Ya-qi
    Chen, Hui-ying
    Zhang, Yi-ling
    Hao, Derek
    Qi, Xiao-yu
    Du, Yuan-da
    Wang, Baoshan
    Wang, Qian
    Zhao, Cong-cong
    Kong, Qiang
    JOURNAL OF CLEANER PRODUCTION, 2020, 276
  • [7] High-strength domestic wastewater treatment using Epipremnum aureum as the cathodic plant in a constructed wetland-microbial fuel cell
    Rajpurohit, Praveen
    Behera, Manaswini
    JOURNAL OF WATER PROCESS ENGINEERING, 2025, 69
  • [8] Integrated Constructed Wetland-Microbial Fuel Cell using Biochar as Wetland Matrix: Influence on Power Generation and Textile Wastewater Treatment
    Sonu, Kumar
    Sogani, Monika
    Syed, Zainab
    CHEMISTRYSELECT, 2021, 6 (32): : 8323 - 8328
  • [9] Optimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems
    Song, Hailiang
    Zhang, Shuai
    Long, Xizi
    Yang, Xiaoli
    Li, Hua
    Xiang, Wenli
    WATER, 2017, 9 (03):
  • [10] Constructed Wetland Coupled Microbial Fuel Cell: A Clean Technology for Sustainable Treatment of Wastewater and Bioelectricity Generation
    Kesarwani, Shiwangi
    Panwar, Diksha
    Mal, Joyabrata
    Pradhan, Nirakar
    Rani, Radha
    FERMENTATION-BASEL, 2023, 9 (01):