Experimental and numerical investigations on flexural-torsional buckling of roller bent steel I-section arches

被引:5
|
作者
Hu, Ya-Chao [1 ]
Xi, Feng [2 ,3 ]
Liu, Feng [1 ]
Tan, Ying-Hua [2 ]
机构
[1] Shandong Univ Sci & Technol, Shandong Prov Key Lab Civil Engn Disaster Prevent, Qingdao 266590, Peoples R China
[2] Shandong Jianzhu Univ, Key Lab Bldg Struct Retrofitting & Underground Spa, Minist Educ, Jinan 250101, Peoples R China
[3] Shandong Jianzhu Univ, Key Lab Bldg Struct Retrofitting & Underground Spa, Minist Educ, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Steel I-section arch; Flexural-torsional buckling; Critical load; OF-PLANE STABILITY; STRENGTH; DESIGN;
D O I
10.1016/j.tws.2023.110727
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The flexural-torsional buckling (FTB) behavior of a freestanding circular steel I-section arch subjected to static load is systematically investigated under residual stresses, geometric imperfections, and load type effects through experimental and numerical simulation analyses. In particular, a loading rig that allows lateral deformation and twist is designed for the experiment, and a 3D scanner is used to measure the geometric imperfections and the final shape to reflect the out-of-plane buckling response better. The buckling behavior is sensitive to the loading form and the imperfection. Thus, the specific structure of the loading system, complex geometric imperfections based on measurement data, and residual stresses based on roller bending process analysis are included in the finite element model (FEM). The accuracy of the FEM is confirmed by comparing the results with the experimental findings, and a comprehensive parameter study is conducted. Results show that the transition of buckling mode will be caused by out-of-plane geometric imperfections. These imperfections significantly affect the critical load of FTB when the amplitude is greater than S/500, while the residual stress of roller bent arch has a small influence on the FTB behavior. The parametric study also finds that the arch has a large critical load of FTB under nondirectional load compared with directional load. The out-of-plane slenderness ratio, the rise-to-span ratio, and the local plastic zone also significantly affect the FTB behavior.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Flexural-torsional buckling assessment of steel beam-columns through a stiffness reduction method
    Kucukler, Merih
    Gardner, Leroy
    Macorini, Lorenzo
    ENGINEERING STRUCTURES, 2015, 101 : 662 - 676
  • [32] Lateral-Torsional Buckling of Externally Prestressed I-Section Steel Beams Subjected to Fire
    Mahieddine, Abdellah
    Ziane, Noureddine
    Ruta, Giuseppe
    Zahi, Rachid
    Zidi, Mohamed
    Meftah, Sid Ahmed
    CIVILENG, 2024, 5 (04): : 1110 - 1134
  • [33] Flexual-torsional buckling behaviour of high-strength steel welded I-section beams: Experimental tests, numerical modelling and design method
    Xu, Cheng
    You, Zhi-Yue
    Zhang, Ce
    Kang, Shao-Bo
    STRUCTURES, 2024, 70
  • [34] Flexural buckling behaviour of high-chromium stainless steel welded I-section columns
    Sun, Yao
    He, An
    Liang, Yating
    Zhao, Ou
    THIN-WALLED STRUCTURES, 2020, 154
  • [35] Simple solutions for the flexural-torsional buckling of laterally restrained I-beams
    Khelil, A.
    Larue, B.
    ENGINEERING STRUCTURES, 2008, 30 (10) : 2923 - 2934
  • [36] Moment gradient correction factor and inelastic flexural-torsional buckling of I-girder with corrugated steel webs
    Moon, Jiho
    Lim, Nam-Hyoung
    Lee, Hak-Eun
    THIN-WALLED STRUCTURES, 2013, 62 : 18 - 27
  • [37] Buckling of stainless steel welded I-section columns
    Tuezney, Stijn
    Lauwens, Kathleen
    Afshan, Sheida
    Rossi, Barbara
    ENGINEERING STRUCTURES, 2021, 236
  • [38] Experimental and numerical investigations of hot-rolled stainless steel channel section columns susceptible to flexural buckling
    Li, Shuai
    Zhang, Lulu
    Liang, Yating
    Zhao, Ou
    THIN-WALLED STRUCTURES, 2021, 164
  • [39] Experimental and numerical investigation on Local-Overall interactive buckling behavior of welded I-Section steel columns
    Shi, Gang
    Zhang, Ziqian
    Zhou, Le
    Yang, Lu
    Zhou, Wenjing
    THIN-WALLED STRUCTURES, 2020, 151
  • [40] Experimental and numerical investigations towards the lateral torsional buckling of cellular steel beams
    Boissonnade, Nicolas
    Nseir, Joanna
    Somja, Hugues
    THIN-WALLED STRUCTURES, 2024, 195