Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO2

被引:58
作者
Choi, Chungseok [1 ,2 ]
Zhao, Fengyi [3 ]
Hart, James L. [4 ]
Gao, Yuanzuo [1 ,2 ]
Menges, Fabian [1 ]
Rooney, Conor L. [1 ,2 ]
Harmon, Nia J. [1 ,2 ]
Shang, Bo [1 ,2 ]
Xu, Zihao [3 ]
Suo, Sa [3 ]
Sam, Quynh [4 ]
Cha, Judy J. [4 ]
Lian, Tianquan [3 ]
Wang, Hailiang [1 ,2 ]
机构
[1] Yale Univ, Dept Chem, New Haven, CT 06511 USA
[2] Yale Univ, Energy Sci Inst, West Haven, CT 06516 USA
[3] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
[4] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
CO2; Capture; Reduction; Molecular Catalyst; Photochemistry; Ternary Hybrid Material; CHARGE-TRANSFER; QUANTUM DOTS; REDUCTION;
D O I
10.1002/anie.202302152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron-hole pairs. The CNTs rapidly transfer the photogenerated electrons from CdS to CoPc. The CoPc molecules then selectively reduce CO2 to CO. The interfacial dynamics and catalytic behavior are clearly revealed by time-resolved and in situ vibrational spectroscopies. In addition to serving as electron highways, the black body property of the CNT component can create local photothermal heating to activate amine-captured CO2, namely carbamates, for direct photochemical conversion without additional energy input.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals [J].
Aldana, J ;
Lavelle, N ;
Wang, YJ ;
Peng, XG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (08) :2496-2504
[2]   Across the Board: Rui Cao on Electrocatalytic CO2 Reduction [J].
Cao, Rui .
CHEMSUSCHEM, 2022, 15 (21)
[3]   CdS-Based photocatalysts [J].
Cheng, Lei ;
Xiang, Quanjun ;
Liao, Yulong ;
Zhang, Huaiwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1362-1391
[4]   In vivo imaging of quantum dots encapsulated in phospholipid micelles [J].
Dubertret, B ;
Skourides, P ;
Norris, DJ ;
Noireaux, V ;
Brivanlou, AH ;
Libchaber, A .
SCIENCE, 2002, 298 (5599) :1759-1762
[5]   Stand-Alone CdS Nanocrystals for Photocatalytic CO2 Reduction with High Efficiency and Selectivity [J].
Feng, You-Xiang ;
Wang, Hong-Juan ;
Wang, Jia-Wei ;
Zhang, Wen ;
Zhang, Min ;
Lu, Tong-Bu .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (22) :26573-26580
[6]   Transient Absorption Spectroscopy of Excitons in an Individual Suspended Metallic Carbon Nanotube [J].
Gao, Bo ;
Hartland, Gregory V. ;
Huang, Libai .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (18) :3050-3055
[7]   Synthesis, characterization and electrochemical properties of tetra 7-oxy-3-biphenylcoumarin substituted metal-free, zinc(II), cobalt(II) and indium(III) phthalocyanines [J].
Gok, Asiye ;
Orman, Efe Baturhan ;
Salan, Umit ;
Ozkaya, Ali Riza ;
Bulut, Mustafa .
DYES AND PIGMENTS, 2016, 133 :311-323
[8]   Carbon Capture and Storage: How Green Can Black Be? [J].
Haszeldine, R. Stuart .
SCIENCE, 2009, 325 (5948) :1647-1652
[9]   Photoinduced ultrafast electron transfer from CdSe quantum dots to re-bipyridyl complexes [J].
Huang, Jier ;
Stockwell, Dave ;
Huang, Zhuangqun ;
Mohler, Debra L. ;
Lian, Tianquan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (17) :5632-+
[10]   Nanoparticle surfactants for kinetically arrested photoactive assemblies to track light-induced electron transfer [J].
Huang, Junyang ;
Foldes, Tamas ;
McCune, Jade A. ;
Xu, David D. ;
de Nijs, Bart ;
Chikkaraddy, Rohit ;
Collins, Sean M. ;
Rosta, Edina ;
Baumberg, Jeremy J. ;
Scherman, Oren A. ;
Sokolowski, Kamil .
NATURE NANOTECHNOLOGY, 2021, 16 (10) :1121-+