Shattered pellet technology development in the ITER DMS test laboratory

被引:17
作者
Zoletnik, S. [1 ]
Walcz, E. [1 ]
Jachmich, S. [2 ]
Kruezi, U. [2 ]
Lehnen, M. [2 ]
Anda, G. [1 ]
Szabolics, T. [1 ]
Szepesi, T. [1 ]
Bartok, G. [1 ]
Cseh, G. [1 ]
Boros, Z. [3 ]
Dunai, D. [1 ]
Gardonyi, G. [4 ]
Hakl, J. [5 ]
Hegedus, S. [1 ]
Katona, I. [1 ]
Kovacs, A. [1 ]
Kocsis, G. [1 ]
Lengyel, M. [3 ]
Meszaros, S. [6 ]
Nagy, D. [1 ]
Oravecz, D. [1 ]
Poszovecz, L. [1 ]
Refy, D. [1 ]
Vad, K. [5 ]
Vecsei, M. [1 ]
机构
[1] Ctr Energy Res, Budapest, Hungary
[2] ITER Org, St Paul Les Durance, France
[3] H Ion Kft, Budapest, Hungary
[4] Budapest Univ Technol & Econ, Budapest, Hungary
[5] Inst Nucl Res, Debrecen, Hungary
[6] VTMT Kft, Debrecen, Hungary
关键词
Pelletizing;
D O I
10.1016/j.fusengdes.2023.113701
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A support laboratory for the ITER Disruption Mitigation System has been set up at the Centre for Energy Research, Budapest, Hungary. It consists of a cryogenic pellet injector capable of producing, launching and shattering 19 x 38 and 28.5 x 55 mm (d x L) cryogenic pellets. Up to now more than 300 pellets made of hydrogen, deuterium, neon and mixtures thereof have been formed and launched . Nearly all pellets flew through the 4 m long, 60 mm diameter flight tube, which represents the ITER flight path between the propellant recovery chamber and the shattering head. Initial analysis of the fragment plumes produced by an open shattering head indicate that they extend 3 times further parallel to the shattering plate than perpendicularly to it. The results show that the large pellets needed for the ITER SPI system can be produced and launched.
引用
收藏
页数:6
相关论文
共 10 条
[1]   Shattered pellet injection technology design and characterization for disruption mitigation experiments [J].
Baylor, L. R. ;
Meitner, S. J. ;
Gebhart, T. E. ;
Caughman, J. B. O. ;
Herfindal, J. L. ;
Shiraki, D. ;
Youchison, D. L. .
NUCLEAR FUSION, 2019, 59 (06)
[2]   Integrating EDICAM into the MARTe framework [J].
Cseh, G. ;
Kocsis, G. ;
Kovacs, B. ;
Skare, E. ;
Szepesi, T. .
FUSION ENGINEERING AND DESIGN, 2023, 191
[3]   Recent progress in shattered pellet injection technology in support of the ITER disruption mitigation system * [J].
Gebhart, T. E. ;
Baylor, L. R. ;
Ericson, M. N. ;
Meitner, S. J. ;
Qualls, A. L. ;
Rasmussen, D. A. .
NUCLEAR FUSION, 2021, 61 (10)
[4]  
Jachmich S., 2022, 32 S FUS TECHN 18 23
[5]  
Lehnen M., 2018, IAEACN258318 FEC
[6]  
Refy D., 2022, FUS ENG DES UNPUB
[7]   In-situ pellet growth and quality monitoring diagnostics for the ITER DMS Support Laboratory [J].
Szepesi, T. ;
Bartok, G. ;
Cseh, G. ;
Gardonyi, G. ;
Jachmich, S. ;
Katona, I. ;
Kocsis, G. ;
Oravecz, D. ;
Walcz, E. ;
Zoletnik, S. .
FUSION ENGINEERING AND DESIGN, 2023, 191
[8]  
Vecsei M., 2022, FUS ENG DES
[9]   Development of a Shattered Pellet Injector test bench for the ITER DMS support laboratory [J].
Walcz, E. ;
Zoletnik, S. ;
Meszaros, S. ;
Vad, K. ;
Hakl, J. ;
Gardonyi, G. ;
Jachmich, S. ;
Kruezi, U. ;
Lehnen, M. .
FUSION ENGINEERING AND DESIGN, 2023, 191
[10]  
Zoletnik S., 2021, 47 EPS C PLASM PHYS