Utilizing Variational Autoencoders in the Bayesian Inverse Problem of Photoacoustic Tomography

被引:3
作者
Sahlstrom, Teemu [1 ]
Tarvainen, Tanja [1 ,2 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, Kuopio, Finland
[2] UCL, Dept Comp Sci, London, England
基金
芬兰科学院; 欧洲研究理事会;
关键词
photoacoustic tomography; Bayesian inverse problems; variational Bayesian methods; machine learning; uncertainty quantification; variational autoencoder; IMAGE-RECONSTRUCTION; LEARNING APPROACH; FORMULAS;
D O I
10.1137/22M1489897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There has been an increasing interest in utilizing machine learning methods in inverse problems and imaging. Most of the work has, however, concentrated on image reconstruction problems, and the number of studies regarding the full solution of the inverse problem is limited. In this work, we study a machine learning--based approach for the Bayesian inverse problem of photoacoustic tomography. We develop an approach for estimating the posterior distribution in photoacoustic tomography using an approach based on the variational autoencoder. The approach is evaluated with numerical simulations and compared to the solution of the inverse problem using a Bayesian approach.
引用
收藏
页码:89 / 110
页数:22
相关论文
共 49 条
[1]   Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed [J].
Agranovsky, Mark ;
Kuchment, Peter .
INVERSE PROBLEMS, 2007, 23 (05) :2089-2102
[2]   Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning [J].
Allman, Derek ;
Reiter, Austin ;
Bell, Muyinatu A. Lediju .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1464-1477
[3]  
ANTHOLZER S., 2019, SPIE, V10878, P272
[4]   Deep learning for photoacoustic tomography from sparse data [J].
Antholzer, Stephan ;
Haltmeier, Markus ;
Schwab, Johannes .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (07) :987-1005
[5]   Accelerated high-resolution photoacoustic tomography via compressed sensing [J].
Arridge, Simon ;
Beard, Paul ;
Betcke, Marta ;
Cox, Ben ;
Huynh, Nam ;
Lucka, Felix ;
Ogunlade, Olumide ;
Zhang, Edward .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (24) :8908-8940
[6]   Biomedical photoacoustic imaging [J].
Beard, Paul .
INTERFACE FOCUS, 2011, 1 (04) :602-631
[7]   A Partially-Learned Algorithm for Joint Photo-acoustic Reconstruction and Segmentation [J].
Boink, Yoeri E. ;
Manohar, Srirang ;
Brune, Christoph .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (01) :129-139
[8]   Robust Vessel Segmentation in Fundus Images [J].
Budai, A. ;
Bock, R. ;
Maier, A. ;
Hornegger, J. ;
Michelson, G. .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013 (2013)
[9]   Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface [J].
Burgholzer, Peter ;
Matt, Gebhard J. ;
Haltmeier, Markus ;
Paltauf, Guenther .
PHYSICAL REVIEW E, 2007, 75 (04)
[10]   Deep learning optoacoustic tomography with sparse data [J].
Davoudi, Neda ;
Dean-Ben, Xose Luis ;
Razansky, Daniel .
NATURE MACHINE INTELLIGENCE, 2019, 1 (10) :453-460