p-Block Antimony Single-Atom Catalysts for Nitric Oxide Electroreduction to Ammonia

被引:119
作者
Chen, Kai [1 ]
Zhang, Ying [1 ]
Xiang, Jiaqi [1 ]
Zhao, Xiaolin [2 ]
Li, Xingang [1 ,3 ]
Chu, Ke [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Mat Sci & Engn, Lanzhou 730070, Peoples R China
[2] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[3] Tianjin Univ, Inst Shaoxing, Sch Chem Engn & Technol, State Key Lab Chem Engn,Tianjin Key Lab Appl Catal, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; ELECTROREDUCTION; NANOSHEETS; VACANCIES; FORMATE;
D O I
10.1021/acsenergylett.2c02882
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalytic NO reduction to NH3 (NORR) offers a prospective approach to attain both harmful NO removal and efficient NH3 electrosynthesis. Main-group p-block metals are promising NORR candidates but still lack adequate exploration. Herein, p-block Sb single atoms confined in amorphous MoO3 (Sb1/a-MoO3) are designed as an efficient NORR catalyst, exhibiting the highest NH3 yield rate of 273.5 mu mol h-1 cm-2 and a NO-to-NH3 Faradaic efficiency of 91.7% at -0.6 V vs RHE. In situ spectroscopic characterizations and theoretical computations reason that the outstanding NORR performance of Sb1/ a-MoO3 arises from the isolated Sb1 sites, which can optimize the adsorption of *NO/*NHO to lower the reaction energy barriers and simultaneously exhibit a higher affinity to NO than to H2O/H species. Moreover, our strategy can be extended to prepare Bi1/a-MoO3, showing a high NORR property, demonstrating the immense potential of p-block metal single-atom catalysts toward the high-performing NORR electrocatalysis.
引用
收藏
页码:1281 / 1288
页数:8
相关论文
共 68 条
[1]   Advances in Electrocatalytic N2 Reduction-Strategies to Tackle the Selectivity Challenge [J].
Chen, Gao-Feng ;
Ren, Shiyu ;
Zhang, Lili ;
Cheng, Hui ;
Luo, Yaru ;
Zhu, Kehan ;
Ding, Liang-Xin ;
Wang, Haihui .
SMALL METHODS, 2019, 3 (06)
[2]   Atomically Fe-doped MoS2_x with Fe-Mo dual sites for efficient electrocatalytic NO reduction to NH3 [J].
Chen, Kai ;
Wang, Jiaxin ;
Kang, Jilong ;
Lu, Xubin ;
Zhao, Xiaolin ;
Chu, Ke .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 324
[3]   Single-Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia [J].
Chen, Kai ;
Ma, Ziyu ;
Li, Xingchuan ;
Kang, Jilong ;
Ma, Dongwei ;
Chu, Ke .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (12)
[4]   Electrochemical NO reduction to NH3 on Cu single atom catalyst [J].
Chen, Kai ;
Zhang, Guike ;
Li, Xiaotian ;
Zhao, Xiaolin ;
Chu, Ke .
NANO RESEARCH, 2023, 16 (04) :5857-5863
[5]   Electrically tunable correlated and topological states in twisted monolayer-bilayer graphene [J].
Chen, Shaowen ;
He, Minhao ;
Zhang, Ya-Hui ;
Hsieh, Valerie ;
Fei, Zaiyao ;
Watanabe, K. ;
Taniguchi, T. ;
Cobden, David H. ;
Xu, Xiaodong ;
Dean, Cory R. ;
Yankowitz, Matthew .
NATURE PHYSICS, 2021, 17 (03) :374-+
[6]   Strong Electronic Interaction of Amorphous Fe2O3 Nanosheets with Single-Atom Pt toward Enhanced Carbon Monoxide Oxidation [J].
Chen, Wenlong ;
Ma, Yanling ;
Li, Fan ;
Pan, Lei ;
Gao, Wenpei ;
Xiang, Qian ;
Shang, Wen ;
Song, Chengyi ;
Tao, Peng ;
Zhu, Hong ;
Pan, Xiaoqing ;
Deng, Tao ;
Wu, Jianbo .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (42)
[7]   MXene Quantum Dots/Copper Nanocomposites for Synergistically Enhanced N2 Electroreduction [J].
Cheng, Yonghua ;
Li, Xingchuan ;
Shen, Peng ;
Guo, Yali ;
Chu, Ke .
ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (01)
[8]   Electro-synthesis of Ammonia from Dilute Nitric Oxide on a Gas Diffusion Electrode [J].
Cheon, Seonjeong ;
Kim, Won June ;
Kim, Dong Yeon ;
Kwon, Youngkook ;
Han, Jong-In .
ACS ENERGY LETTERS, 2022, 7 (03) :958-965
[9]   Electrocatalytic NO Reduction to NH3 on Mo2C Nanosheets [J].
Chu, Ke ;
Chen, Kai ;
Shen, Peng ;
Zhang, Nana ;
Ma, Dongwei .
INORGANIC CHEMISTRY, 2023, 62 (02) :653-658
[10]   Unveiling the Synergy of O-Vacancy and Heterostructure over MoO3-x/MXene for N2 Electroreduction to NH3 [J].
Chu, Ke ;
Luo, Yaojing ;
Shen, Peng ;
Li, Xingchuan ;
Li, Qingqing ;
Guo, Yali .
ADVANCED ENERGY MATERIALS, 2022, 12 (03)