A path integral Monte Carlo (PIMC) method based on Feynman-Kac formula for electrical impedance tomography

被引:1
|
作者
Ding, Cuiyang [1 ]
Zhou, Yijing [2 ]
Cai, Wei [3 ]
Zeng, Xuan [1 ]
Yan, Changhao [1 ]
机构
[1] Fudan Univ, Sch Microelect, State Key Lab ASIC & Syst, Shanghai, Peoples R China
[2] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
[3] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
EIT; Reflecting Brownian motion; Boundary local time; Feynman-Kac formula; Laplace equation; Mixed boundary problem; BOUNDARY-VALUE PROBLEM; SPHERES ALGORITHM; UNIQUENESS; EQUATIONS; WALK;
D O I
10.1016/j.jcp.2022.111862
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A path integral Monte Carlo method (PIMC) based on a Feynman-Kac formula for the Laplace equation with mixed boundary conditions is proposed to solve the forward problem of the electrical impedance tomography (EIT). The forward problem is an important part of iterative algorithms of the inverse EIT problem, and the proposed PIMC provides a local solution to find the potentials and currents on individual electrodes. Improved techniques are proposed to compute with better accuracy both the local time of reflecting Brownian motions (RBMs) and the Feynman-Kac formula for mixed boundary problems of the Laplace equation. Accurate voltage-to-current maps on the electrodes of a model 3-D EIT problem with eight electrodes are obtained by solving a mixed boundary problem with the proposed PIMC method. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Path integral Monte Carlo method for option pricing
    Capuozzo, Pietro
    Panella, Emanuele
    Gherardini, Tancredi Schettini
    Vvedensky, Dimitri D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 581
  • [42] A Feynman-Kac path-integral implementation for Poisson's equation using an h-conditioned Green's function
    Hwang, CO
    Mascagni, M
    Given, JA
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (3-6) : 347 - 355
  • [43] MoRiBS-PIMC: A program to simulate molecular rotors in bosonic solvents using path-integral Monte Carlo
    Zeng, Tao
    Blinov, Nicholas
    Guillon, Gregoire
    Li, Hui
    Bishop, Kevin P.
    Roy, Pierre-Nicholas
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 204 : 170 - 188
  • [44] Path Integral Monte Carlo Method for Ab Initio Calculation
    Kawabe, H.
    Nagao, H.
    Nishikawa, K.
    International Journal of Quantum Chemistry, 60 (07):
  • [45] Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography
    Kaipio, JP
    Kolehmainen, V
    Somersalo, E
    Vauhkonen, M
    INVERSE PROBLEMS, 2000, 16 (05) : 1487 - 1522
  • [46] Path integral Monte Carlo method for ab initio calculation
    Kawabe, H
    Nagao, H
    Nishikawa, K
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1996, 60 (07) : 1223 - 1230
  • [47] Path integral Monte Carlo method for the quantum anharmonic oscillator
    Mittal, Shikhar
    Westbroek, Marise J. E.
    King, Peter R.
    Vvedensky, Dimitri D.
    EUROPEAN JOURNAL OF PHYSICS, 2020, 41 (05)
  • [48] PHASES OF HELIUM ABSORBED ON GRAPHITE - A FEYNMAN PATH-INTEGRAL MONTE-CARLO STUDY
    ABRAHAM, FF
    BROUGHTON, JQ
    PHYSICAL REVIEW LETTERS, 1987, 59 (01) : 64 - 67
  • [49] An Ising computer based on simulated quantum annealing by path integral Monte Carlo method
    Okuyama, Takuya
    Hayashi, Masato
    Yamaoka, Masanao
    2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2017, : 124 - 129
  • [50] A new ?walk on spheres? type method for fractional diffusion equation in high dimensions based on the Feynman-Kac formulas
    Su, Bihao
    Xu, Chenglong
    Sheng, Changtao
    APPLIED MATHEMATICS LETTERS, 2023, 141