MXenes as Alternative Plasmonic Coatings on 1D Photonic Crystals Platforms for Tamm Plasmon Polaritons

被引:1
作者
Obradov, Marko [1 ]
Jaksic, Zoran [1 ]
Mladenovic, Ivana [1 ]
Bartula, Anja [2 ]
Jaksic, Olga [1 ]
机构
[1] Univ Belgrade, Inst Chem Technol & Met, Natl Inst Republ Serbia, Ctr Microelect Technol, Njegoseva 12, Belgrade 11000, Serbia
[2] Svetozar Markovic Coll, Preparatory Sch, Njegoseva 22, Novi Sad 21000, Serbia
关键词
MXenes; ultrathin coatings; plasmonics; photonic crystals; Bragg reflectors; diffractive coupling; surface plasmon polaritons; optical Tamm states; Tamm plasmon polaritons; SURFACE; FILMS; BAND;
D O I
10.3390/coatings13010198
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New materials are of essential importance for the advancement of nanophotonics and nanoplasmonics. Numerous electromagnetic modes, especially various evanescent surface waves, prove themselves useful in multitudinous practical applications. Here we investigate the use of MXenes as alternative plasmonic materials in freestanding (substrateless) planar nanocomposites that support the existence of Tamm plasmon polaritons (TPP). We use finite element simulations to consider the influence of using MXenes on the propagation and distribution of TPP and the difference in their electromagnetic behavior compared to that of commonly used noble metals. While MXenes allow for somewhat weaker coupling between incident light and TPP, even the thinnest MXene layers practically completely screen the structure behind them. Our diffraction grating-enhanced stacks achieved incident light direction-dependent improvement of the coupling strength and polarization-dependent hybridization of electromagnetic states. MXene ensures improvements in functionality, especially spectral, directional, and polarization selectivity, by imparting rich modal behavior. Importantly, we observed high optical asymmetry of reflectance when illuminating the structures from opposite directions and obtained large high-to-low reflection ratios with a very small number of dielectric layers in the capping 1D photonic crystal. We conclude that MXenes represent a viable alternative for TPP-supporting structures, offering many advantages.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Optical properties of metallic films for vertical-cavity optoelectronic devices
    Rakic, AD
    Djurisic, AB
    Elazar, JM
    Majewski, ML
    [J]. APPLIED OPTICS, 1998, 37 (22) : 5271 - 5283
  • [42] Self-consistent optical constants of SiO2 and Ta2O5 films
    Rodriguez-de Marcos, Luis V.
    Larruquert, Juan I.
    Mendez, Jose A.
    Aznarez, Jose A.
    [J]. OPTICAL MATERIALS EXPRESS, 2016, 6 (11): : 3622 - 3637
  • [43] Impressive nonlinear optical responses of a cationic porphyrin derivative in a flexible all-polymer Bragg stack on optical Tamm mode coupling
    Vijisha, M. V.
    Ramesh, Jagadeesan
    Arunkumar, Chellaiah
    Chandrasekharan, K.
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (36) : 12689 - 12697
  • [44] Surface states in photonic crystals
    Vinogradov, A. P.
    Dorofeenko, A. V.
    Merzlikin, A. M.
    Lisyansky, A. A.
    [J]. PHYSICS-USPEKHI, 2010, 53 (03) : 243 - 256
  • [45] Plasmonic Bragg Reflector and Tamm Plasmon Polaritons in Metal-Dielectric Superlattices
    Vukovic, S. M.
    [J]. ACTA PHYSICA POLONICA A, 2009, 116 (04) : 678 - 680
  • [46] Hot-electron photodetector with wavelength selectivity in near-infrared via Tamm plasmon
    Wang, Zhiyu
    Clark, J. Kenji
    Ho, Ya-Lun
    Delaunay, Jean-Jacques
    [J]. NANOSCALE, 2019, 11 (37) : 17407 - 17414
  • [47] Dual-band nonreciprocal thermal radiation by coupling optical Tamm states in magnetophotonic multilayers
    Wu, Jun
    Wu, Feng
    Zhao, Tiancheng
    Antezza, Mauro
    Wu, Xiaohu
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 175
  • [48] Tunable perfect dual-narrowband absorber based on graphene-photonic crystal heterostructure
    Wu, Yuexiang
    Wu, Weiqiang
    Hu, Jiashun
    [J]. RESULTS IN PHYSICS, 2022, 34
  • [49] Tamm Plasmon-Polariton Ultraviolet Lasers
    Xu, Wen-Hui
    Chou, Yu-Hsun
    Yang, Zih-Ying
    Liu, Yi-Yun
    Yu, Min-Wen
    Huang, Chen-Hang
    Chang, Chun-Tse
    Huang, Chen-Yu
    Lu, Tien-Chang
    Lin, Tzy-Rong
    Chen, Kuo-Ping
    [J]. ADVANCED PHOTONICS RESEARCH, 2022, 3 (01):
  • [50] Optical Tamm states in photonic structures made of inhomogeneous material
    Zheng, Yazhuo
    Wang, Yongxing
    Luo, Jie
    Xu, Ping
    [J]. OPTICS COMMUNICATIONS, 2018, 406 : 103 - 106