MXenes as Alternative Plasmonic Coatings on 1D Photonic Crystals Platforms for Tamm Plasmon Polaritons

被引:1
作者
Obradov, Marko [1 ]
Jaksic, Zoran [1 ]
Mladenovic, Ivana [1 ]
Bartula, Anja [2 ]
Jaksic, Olga [1 ]
机构
[1] Univ Belgrade, Inst Chem Technol & Met, Natl Inst Republ Serbia, Ctr Microelect Technol, Njegoseva 12, Belgrade 11000, Serbia
[2] Svetozar Markovic Coll, Preparatory Sch, Njegoseva 22, Novi Sad 21000, Serbia
关键词
MXenes; ultrathin coatings; plasmonics; photonic crystals; Bragg reflectors; diffractive coupling; surface plasmon polaritons; optical Tamm states; Tamm plasmon polaritons; SURFACE; FILMS; BAND;
D O I
10.3390/coatings13010198
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New materials are of essential importance for the advancement of nanophotonics and nanoplasmonics. Numerous electromagnetic modes, especially various evanescent surface waves, prove themselves useful in multitudinous practical applications. Here we investigate the use of MXenes as alternative plasmonic materials in freestanding (substrateless) planar nanocomposites that support the existence of Tamm plasmon polaritons (TPP). We use finite element simulations to consider the influence of using MXenes on the propagation and distribution of TPP and the difference in their electromagnetic behavior compared to that of commonly used noble metals. While MXenes allow for somewhat weaker coupling between incident light and TPP, even the thinnest MXene layers practically completely screen the structure behind them. Our diffraction grating-enhanced stacks achieved incident light direction-dependent improvement of the coupling strength and polarization-dependent hybridization of electromagnetic states. MXene ensures improvements in functionality, especially spectral, directional, and polarization selectivity, by imparting rich modal behavior. Importantly, we observed high optical asymmetry of reflectance when illuminating the structures from opposite directions and obtained large high-to-low reflection ratios with a very small number of dielectric layers in the capping 1D photonic crystal. We conclude that MXenes represent a viable alternative for TPP-supporting structures, offering many advantages.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Surface plasmon resonance for biosensing: A mini-review
    Abdulhalim, Ibrahim
    Zourob, Mohammad
    Lakhtakia, Akhlesh
    [J]. ELECTROMAGNETICS, 2008, 28 (03) : 214 - 242
  • [2] Ultrafast All-Optical Light Control with Tamm Plasmons in Photonic Nanostructures
    Afinogenov, Boris I.
    Bessonov, Vladimir O.
    Soboleva, Irma V.
    Fedyanin, Andrey A.
    [J]. ACS PHOTONICS, 2019, 6 (04) : 844 - 850
  • [3] Dyakonov surface waves in photonic metamaterials
    Artigas, D
    Torner, L
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (01)
  • [4] Strong Coupling between Tamm and Surface Plasmons for Advanced Optical Bio-Sensing
    Balevicius, Zigmas
    [J]. COATINGS, 2020, 10 (12) : 1 - 10
  • [5] Benisty H., 2022, Introduction to Nanophotonics
  • [6] Tamm Plasmon Polaritons for Light Trapping in Organic Solar Cells
    Bikbaev, R. G.
    Vetrov, S. Ya.
    Timofeev, I. V.
    Shabanov, V. F.
    [J]. DOKLADY PHYSICS, 2020, 65 (05) : 161 - 163
  • [7] Double-Resolved Beam Steering by Metagrating-Based Tamm Plasmon Polariton
    Bikbaev, Rashid G.
    Maksimov, Dmitrii N.
    Chen, Kuo-Ping
    Timofeev, Ivan, V
    [J]. MATERIALS, 2022, 15 (17)
  • [8] Epsilon-Near-Zero Absorber by Tamm Plasmon Polariton
    Bikbaev, Rashid G.
    Vetrov, Stepan Ya.
    Timofeev, Ivan V.
    [J]. PHOTONICS, 2019, 6 (01)
  • [9] Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films
    Bright, T. J.
    Watjen, J. I.
    Zhang, Z. M.
    Muratore, C.
    Voevodin, A. A.
    Koukis, D. I.
    Tanner, D. B.
    Arenas, D. J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 114 (08)
  • [10] Hybrid Tamm-surface plasmon polariton mode for highly sensitive detection of protein interactions
    Buzavaite-Verteliene, E.
    Plikusiene, I
    Tolenis, T.
    Valavicius, A.
    Anulyte, J.
    Ramanavicius, A.
    Balevicius, Z.
    [J]. OPTICS EXPRESS, 2020, 28 (20): : 29033 - 29043