Interfacial C-S Bonds of g-C3N4/Bi19Br3S27 S-Scheme Heterojunction for Enhanced Photocatalytic CO2 Reduction

被引:33
|
作者
Li, Xiaofeng [1 ]
Zhang, Jinfeng [1 ]
Wang, Zhongliao [1 ]
Fu, Junwei [2 ]
Li, Simin [3 ]
Dai, Kai [1 ]
Liu, Min [2 ]
机构
[1] Huaibei Normal Univ, Key Lab Green & Precise Synthet Chem & Applicat, Minist Educ, Huaibei 235000, Peoples R China
[2] Cent South Univ, Hunan Joint Int Res Ctr Carbon Dioxide Resource Ut, Sch Phys & Elect, Changsha 410083, Peoples R China
[3] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi19Br3S27; carbon nitride; CO2; photoreduction; interfacial chemical bonds; S-scheme heterojunction; LIGHT;
D O I
10.1002/chem.202202669
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Step-scheme (S-scheme) heterojunctions have been extensively studied in photocatalytic carbon dioxide (CO2) reduction due to their excellent charge separation and high redox ability. The built-in electric field at the interface of a S-scheme heterojunction serves as the driving force for charge transfer, however, the poor interfacial contact greatly restricts the carrier migration rate. Herein, we synthesized the g-C3N4/Bi19Br3S27 S-scheme heterostructure through in situ deposition of Bi19Br3S27 (BBS) on porous g-C3N4 (P-CN) nanosheets. The C-S bonds formed at the interface help to enhance the built-in electric field, thereby promoting the charge transfer and separation. As a result, the CO2 reduction reaction performance of 10 %Bi19Br3S27/g-C3N4 (BBS/P-CN) reaches 32.78 mu mol g(-1)h(-1), which is 341.4 and 18.7 times higher than that of pure BBS and P-CN, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) prove the presence of chemical bonds (C-S) between the P-CN and BBS. The S-scheme charge-transfer mechanism was analyzed via XPS and density functional theory (DFT) calculations. This work provides a new idea for designing heterojunction photocatalysts with interfacial chemical bonds to achieve high charge-transfer and catalytic activity.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] P-doped ultrathin g-C3N4 /In2S3 S-scheme heterojunction enhances photocatalytic hydrogen production and degradation of ofloxacin
    Li, Yongyi
    Yang, Huixing
    Li, Wei
    Shao, Zhigang
    Yu, Yongzhuo
    Yan, Huixiang
    Jiao, Shichao
    Lin, Di
    Zhang, Wenxu
    Lv, Chaoyu
    Huang, Yuxin
    PHYSICA B-CONDENSED MATTER, 2024, 685
  • [22] Study on TiO2/g-C3N4 S-Scheme heterojunction photocatalyst for enhanced formaldehyde decomposition
    Wu, Yihai
    Meng, Deqin
    Guo, Qingbin
    Gao, Dengzheng
    Wang, Li
    OPTICAL MATERIALS, 2022, 126
  • [23] Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction
    Ye, Liqun
    Wu, Dan
    Chu, Ka Him
    Wang, Bo
    Xie, Haiquan
    Yip, Ho Yin
    Wong, Po Keung
    CHEMICAL ENGINEERING JOURNAL, 2016, 304 : 376 - 383
  • [24] Excellent photocatalytic activity of MoO3-adorned g-C3N4 systems: Construction of S-scheme heterojunction
    Luo, Jianmin
    Han, Haonan
    Wu, Jingwu
    Wang, Xinlei
    Feng, Junli
    Toan, Sam
    Wang, Lei
    Lai, Yinlong
    APPLIED SURFACE SCIENCE, 2022, 604
  • [25] Bi2WO6/C3N4 S-Scheme Heterojunction with a Built-In Electric Field for Photocatalytic CO2 Reduction
    Tang, Qiaoya
    Tao, Wei
    Hu, Jianqiang
    Gui, Tian
    Wang, Zhipeng
    Xiao, Yuting
    Song, Renjie
    Jiang, Yong
    Guo, Shien
    ACS APPLIED NANO MATERIALS, 2023, 6 (18) : 17130 - 17139
  • [26] WO3/BiOBr S-Scheme Heterojunction Photocatalyst for Enhanced Photocatalytic CO2 Reduction
    Li, Chen
    Lu, Xingyu
    Chen, Liuyun
    Xie, Xinling
    Qin, Zuzeng
    Ji, Hongbing
    Su, Tongming
    MATERIALS, 2024, 17 (13)
  • [27] Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction
    Wang, Jiangpeng
    Yu, Yue
    Cui, Jiayi
    Li, Xinran
    Zhang, Yilin
    Wang, Chao
    Yu, Xuelian
    Ye, Jinhua
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 301
  • [28] In Situ Preparation of Mn0.2Cd0.8S-Diethylenetriamine/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic Hydrogen Production
    Zhao, Zhiwei
    Dai, Kai
    Zhang, Jinfeng
    Dawson, Graham
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (01)
  • [29] In situ fabrication of Bi2Se3/g-C3N4 S-scheme photocatalyst with improved photocatalytic activity
    He, Rongan
    Ou, Sijiao
    Liu, Yexuan
    Liu, Yu
    Xu, Difa
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (02) : 370 - 378
  • [30] CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction
    Zhao, Xiaoxue
    Guan, Jingru
    Li, Jinze
    Li, Xin
    Wang, Huiqin
    Huo, Pengwei
    Yan, Yongsheng
    APPLIED SURFACE SCIENCE, 2021, 537