Predictive uncertainty estimation for out-of-distribution detection in digital pathology

被引:26
作者
Linmans, Jasper [1 ]
Elfwing, Stefan [2 ]
van der Laak, Jeroen [1 ,3 ]
Litjens, Geert [1 ]
机构
[1] Radboud Univ Nijmegen, Radboud Inst Hlth Sci, Dept Pathol, Med Ctr, Nijmegen, Netherlands
[2] Inify Labs AB, Stockholm, Sweden
[3] Linkoping Univ, Ctr Med Image Sci & Visualizat, Linkoping, Sweden
基金
荷兰研究理事会;
关键词
Deep learning; Histopathology; Out-of-distribution detection; Uncertainty estimation; Ensemble diversity; Multi-heads;
D O I
10.1016/j.media.2022.102655
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning model deployment in clinical practice demands real-time risk assessment to identify situations in which the model is uncertain. Once deployed, models should be accurate for classes seen during training while providing informative estimates of uncertainty to flag abnormalities and unseen classes for further analysis. Although recent developments in uncertainty estimation have resulted in an increasing number of methods, a rigorous empirical evaluation of their performance on large-scale digital pathology datasets is lacking. This work provides a benchmark for evaluating prevalent methods on multiple datasets by comparing the uncertainty estimates on both in-distribution and realistic near and far out-of-distribution (OOD) data on a whole-slide level. To this end, we aggregate uncertainty values from patch-based classifiers to whole-slide level uncertainty scores. We show that results found in classical computer vision benchmarks do not always translate to the medical imaging setting. Specifically, we demonstrate that deep ensembles perform best at detecting far-OOD data but can be outperformed on a more challenging near-OOD detection task by multi-head ensembles trained for optimal ensemble diversity. Furthermore, we demonstrate the harmful impact OOD data can have on the performance of deployed machine learning models. Overall, we show that uncertainty estimates can be used to discriminate in-distribution from OOD data with high AUC scores. Still, model deployment might require careful tuning based on prior knowledge of prospective OOD data.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Out-of-Distribution (OOD) Detection Based on Deep Learning: A Review
    Cui, Peng
    Wang, Jinjia
    ELECTRONICS, 2022, 11 (21)
  • [22] Out-of-distribution detection by regaining lost clues
    Zhao, Zhilin
    Cao, Longbing
    Yu, Philip S.
    ARTIFICIAL INTELLIGENCE, 2025, 339
  • [23] Latent Transformer Models for out-of-distribution detection
    Graham, Mark S.
    Tudosiu, Petru-Daniel
    Wright, Paul
    Pinaya, Walter Hugo Lopez
    Teikari, Petteri
    Patel, Ashay
    U-King-Im, Jean-Marie
    Mah, Yee H.
    Teo, James T.
    Jager, Hans Rolf
    Werring, David
    Rees, Geraint
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [24] Out-of-Distribution Detection with Memory-Augmented Variational Autoencoder
    Ataeiasad, Faezeh
    Elizondo, David
    Ramirez, Saul Calderon
    Greenfield, Sarah
    Deka, Lipika
    MATHEMATICS, 2024, 12 (19)
  • [25] A Simple Framework for Robust Out-of-Distribution Detection
    Hur, Youngbum
    Yang, Eunho
    Hwang, Sung Ju
    IEEE ACCESS, 2022, 10 : 23086 - 23097
  • [26] Language Models as Reasoners for Out-of-Distribution Detection
    Kirchheim, Konstantin
    Ortmeier, Frank
    COMPUTER SAFETY, RELIABILITY, AND SECURITY. SAFECOMP 2024 WORKSHOPS, 2024, 14989 : 379 - 390
  • [27] Weighted Mutual Information for Out-Of-Distribution Detection
    De Bernardi, Giacomo
    Narteni, Sara
    Cambiaso, Enrico
    Muselli, Marco
    Mongelli, Maurizio
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 318 - 331
  • [28] Decomposing texture and semantic for out-of-distribution detection
    Moon, Jeong-Hyeon
    Ahn, Namhyuk
    Sohn, Kyung-Ah
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [29] Out-of-Distribution Detection for Reliable Face Recognition
    Yu, Chang
    Zhu, Xiangyu
    Lei, Zhen
    Li, Stan Z.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 710 - 714
  • [30] Research on Image Out-of-Distribution Detection: A Review
    Guo L.
    Li G.
    Gong K.
    Xue Z.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (07): : 613 - 633