Alternating direction implicit method for singularly perturbed 2D parabolic convection-diffusion-reaction problem with two small parameters

被引:6
作者
Mrityunjoy, B. [1 ]
Natesan, S. [1 ]
Sendur, A. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Gauhati 781039, India
[2] Alanya Alaaddin Keykubat Univ, Dept Math Educ, Antalya, Turkey
关键词
Singularly perturbed 2D parabolic convection-reaction-diffusion problem; alternating direction implicit scheme; finite difference scheme; Shishkin meshes; stability; uniform error estimate; FINITE-DIFFERENCE SCHEME; MESH;
D O I
10.1080/00207160.2022.2114077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we construct and analyse an Alternating Direction Implicit (ADI) scheme for singularly perturbed 2D parabolic convection-diffusion-reaction problems with two small parameters. We consider the operator-splitting ADI finite difference scheme for time stepping on a uniform mesh and a simple upwind-difference scheme for spatial discretization on a specially designed piecewise-uniform Shishkin mesh. The resulting scheme is proved to be uniformly convergent of order O(N-1 In N + M-1), where N, M are the spatial and temporal parameters respectively. Numerical experiments confirm the theoretical results and the effectiveness of the proposed method.
引用
收藏
页码:253 / 282
页数:30
相关论文
共 43 条
[41]   A finite difference method for a singularly perturbed 2-D elliptic convection-diffusion PDEs on Shishkin-type meshes with non-smooth convection and source terms [J].
Shiromani, Ram ;
Shanthi, Vembu ;
Vigo-Aguiar, J. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) :5915-5936
[42]   A uniformly convergent alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems [J].
Clavero, C ;
Gracia, JL ;
Jorge, JC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (01) :155-172
[43]   High accuracy two-level compact implicit method in exponential form for 2D fourth order quasi-linear parabolic equations [J].
Sharma, Divya ;
Mittal, Kajal ;
Kaur, Deepti ;
Ray, Rajendra K. ;
Mohanty, R. K. .
NUMERICAL ALGORITHMS, 2024,