共 50 条
Experimental Spectroscopic, Computational, Hirshfeld Surface, Molecular Docking Investigations on 1H-Indole-3-Carbaldehyde
被引:32
|作者:
Fatima, Aysha
[1
,2
]
Khanum, Ghazala
[1
]
Sharma, Arun
[1
]
Verma, Indresh
[3
]
Arora, Himanshu
[4
]
Siddiqui, Nazia
[5
]
Javed, Saleem
[2
]
机构:
[1] Jiwaji Univ, SOS Chem, Gwalior, Madhya Pradesh, India
[2] Dr Bhimrao Ambedkar Univ, Dept Chem, Agra 282002, Uttar Pradesh, India
[3] Indian Inst Technol, Dept Chem, Kanpur, Uttar Pradesh, India
[4] GD Goenka Univ, Sch Engn & Sci, Dept Basic & Appl Sci, Gurugram, Haryana, India
[5] Dayalbagh Educ Inst Agra, USIC, Agra 282005, Uttar Pradesh, India
关键词:
Optimization;
vibrational analysis;
hirshfeld surface;
MEP;
ELF;
docking;
EXPERIMENTAL FT-IR;
ANTICANCER AGENTS;
INDOLE;
SCAFFOLD;
RAMAN;
NMR;
DFT;
NBO;
DERIVATIVES;
INHIBITORS;
D O I:
10.1080/10406638.2022.2026989
中图分类号:
O62 [有机化学];
学科分类号:
070303 ;
081704 ;
摘要:
1H-Indole-3-carbaldehyde (1H-I3A) was investigated experimentally by NMR (1H-NMR and 13 C-NMR in solution form), FT-Raman, FT-IR, UV-Visible and quantum chemically by DFT approach. 3 D and 2 D surface analysis was carried by Hirshfeld surface analysis. The B3LYP method and the 6-311++G(d,p) basis set were used to optimize the molecular structure and vibrational modes. Optimized binding parameters and experimental binding parameters are in good agreement. VEDA (Vibrational Energy Distribution analysis) successfully carried out and complete tasks for the distribution of potential energy. 1H-NMR and 13 C-NMR shifts were estimated with GIAO method and the results compared with experimental spectra. The TDDFT method and the PCM solvent model were used for the analysis of electronic properties such as UV-Vis (in the gas phase, methanol and DMSO) and compared with the experimental UV-Vis spectra. The HOMO/LUMO energy results underscore that sufficient charge transfer has taken place within the molecule. Studies of donor-acceptor connections were performed using NBO analysis. The MEP surface analysis was performed and charge distribution was demonstrated. The degree of relative localization of electrons was analyzed using the FLF diagram. The Fukui functional analysis to find possible points of attack for various substituents. Molecular electrostatic potential (MEP) was created and 3-D color representation shows reactive sites. Study of donor-acceptor interconnections were done via NBO analysis. The biological study like molecular docking was done with 7 different receptors to find the best ligand-protein interactions and drug similarities.
引用
收藏
页码:1263 / 1287
页数:25
相关论文