An IEEE 802.15.4/4z Coherent Quadrature Hybrid Correlation UWB Receiver in 65-nm CMOS

被引:1
作者
Nie, Yunzhao [1 ]
Rhee, Woogeun [1 ]
Wang, Zhihua [1 ]
机构
[1] Tsinghua Univ, Sch Integrated Circuits, Beijing 100084, Peoples R China
关键词
Receivers; Correlation; Synchronization; Correlators; Symbols; Codes; Signal to noise ratio; Analog correlator; CMOS; IEEE; 802154; impulse radio; low-power; receiver; synchronization; time-of-arrival (ToA); ultra-wideband (UWB); LOW-ENERGY; PJ/PULSE; POWER;
D O I
10.1109/JSSC.2024.3368281
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a coherent ultra-wideband (UWB) receiver architecture based on a quadrature hybrid correlation (QHC) method that significantly reduces the digital-correlation-relevant power in the conventional standard-compliant UWB receiver. The proposed QHC receiver front end employs analog correlation, two-step synchronization with a digital-assisted path, and time-interleaved (TI) sampling methods for low-power synchronization and demodulation. A code-mismatch-evaluation method is adopted to achieve the time-of-arrival (ToA) function. In addition, a ternary analog correlator is designed for noise mitigation and high-quality computing. A prototype UWB receiver covering an 8-GHz channel is implemented in 65-nm CMOS. The receiver supports preamble, scrambled timestamp sequence (STS), and burst position modulation (BPM) with a symbol rate of 0.98/7.8 Mbaud/s. With a duty-cycled operation, the receiver consumes 17.3 mW at 0.98 Mbaud/s with a sensitivity of - 88 dBm at a bit-error rate (BER) of 10(-3) during payload. The blocker tolerance is - 24 dBm. In the STS field, the receiver achieves an rms ranging error of 1.9 cm.
引用
收藏
页码:2378 / 2389
页数:12
相关论文
共 29 条
[1]   An Interferer-Tolerant CMOS Code-Domain Receiver Based on N-Path Filters [J].
Agrawal, Abhishek ;
Natarajan, Arun .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (05) :1387-1397
[2]  
[Anonymous], 2020, 8021542020 IEEE, P1, DOI DOI 10.1109/IEEESTD.2020.9144691
[3]  
[Anonymous], 2020, Standard IEEE 802.15.4
[4]   A 3-10GHz 21.5mW/Channel RX and 8.9mW TX IR-UWB 802.15.4a/z 1T3R Transceiver [J].
Bechthum, Elbert ;
Song, Minyoung ;
Singh, Gaurav ;
Allebes, Erwin ;
Basetas, Charis ;
Boer, Pepijn ;
Breeschoten, Arjan ;
Cloudt, Stefan ;
Dijkhuis, Johan ;
Ding, Ming ;
Gatchalian, Sherwin ;
He, Yuming ;
van den Heuvel, Johan ;
Hijdra, Martijn ;
Mateman, Paul ;
Meyer, Bernard ;
van Schaik, Gert-Jan ;
El Soussi, Mohieddine ;
Thijssen, Bart ;
Traferro, Stefano ;
Turin, Evgenii ;
Vis, Peter ;
Winkel, Nick ;
Zhang, Peng ;
Liu, Yao-Hong ;
Bachmann, Christian .
ESSCIRC 2022- IEEE 48TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2022, :421-424
[5]  
Chen R., 2022, P IEEE INT SOL STAT, P396
[6]   TOA Estimation with the IEEE 802.15.4a Standard [J].
D'Amico, Antonio A. ;
Mengali, Umberto ;
Taponecco, Lorenzo .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2010, 9 (07) :2238-2247
[7]  
Decawave (Now Qorvo), 2021, DW3000 DAT SHEET
[8]  
Decawave (Now Qorvo), 2019, DW3000 FAM US MAN
[9]  
Fernandes JR, 2010, IEEE INT SYMP CIRC S, P3284, DOI 10.1109/ISCAS.2010.5537916
[10]   Position Estimation via Ultra-Wide-Band Signals [J].
Gezici, Sinan ;
Poor, H. Vincent .
PROCEEDINGS OF THE IEEE, 2009, 97 (02) :386-403