Complication Prediction after Esophagectomy with Machine Learning

被引:4
作者
van de Beld, Jorn-Jan [1 ,2 ]
Crull, David [2 ]
Mikhal, Julia [2 ,3 ]
Geerdink, Jeroen [2 ]
Veldhuis, Anouk [2 ]
Poel, Mannes [1 ]
Kouwenhoven, Ewout A. [2 ]
机构
[1] Univ Twente, Fac EEMCS, NL-7500 AE Enschede, Netherlands
[2] Hosp Grp Twente ZGT, NL-7609 PP Almelo, Netherlands
[3] Univ Twente, Fac BMS, NL-7500 AE Enschede, Netherlands
关键词
esophagectomy; clinical decision support; multimodal machine learning; temporal learning; PULMONARY COMPLICATIONS; CANCER; MORTALITY; HEALTH;
D O I
10.3390/diagnostics14040439
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Esophageal cancer can be treated effectively with esophagectomy; however, the postoperative complication rate is high. In this paper, we study to what extent machine learning methods can predict anastomotic leakage and pneumonia up to two days in advance. We use a dataset with 417 patients who underwent esophagectomy between 2011 and 2021. The dataset contains multimodal temporal information, specifically, laboratory results, vital signs, thorax images, and preoperative patient characteristics. The best models scored mean test set AUROCs of 0.87 and 0.82 for leakage 1 and 2 days ahead, respectively. For pneumonia, this was 0.74 and 0.61 for 1 and 2 days ahead, respectively. We conclude that machine learning models can effectively predict anastomotic leakage and pneumonia after esophagectomy.
引用
收藏
页数:14
相关论文
共 27 条
[1]   Risk factors and therapeutic measures for postoperative complications associated with esophagectomy [J].
Ahmadinejad, Mojtaba ;
Soltanian, Ali ;
Maghsoudi, Leila Haji .
ANNALS OF MEDICINE AND SURGERY, 2020, 55 :167-173
[2]   Use of C-reactive protein for the early prediction of anastomotic leak after esophagectomy: Systematic review and Bayesian meta-analysis [J].
Aiolfi, Alberto ;
Asti, Emanuele ;
Rausa, Emanuele ;
Bonavina, Giulia ;
Bonitta, Gianluca ;
Bonavina, Luigi .
PLOS ONE, 2018, 13 (12)
[3]   Machine learning applications in upper gastrointestinal cancer surgery: a systematic review [J].
Bektas, Mustafa ;
Burchell, George L. ;
Bonjer, H. Jaap ;
van der Peet, Donald L. .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2023, 37 (01) :75-89
[4]   Diagnostic value of drain amylase for detecting intrathoracic leakage after esophagectomy [J].
Berkelmans, Gijs H. K. ;
Kouwenhoven, Ewout A. ;
Smeets, Boudewijn J. J. ;
Weijs, Teus J. ;
Corten, Luis C. Silva ;
van Det, Marc J. ;
Nieuwenhuijzen, Grard A. P. ;
Luyer, Misha D. P. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2015, 21 (30) :9118-9125
[5]   Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial [J].
Biere, Surya S. A. Y. ;
Henegouwen, Mark I. van Berge ;
Maas, Kirsten W. ;
Bonavina, Luigi ;
Rosman, Camiel ;
Roig Garcia, Josep ;
Gisbertz, Suzanne S. ;
Klinkenbijl, Jean H. G. ;
Hollmann, Markus W. ;
de lange, Elly S. M. ;
Bonjer, H. Jaap ;
van der Peet, Donald L. ;
Cuesta, Miguel A. .
LANCET, 2012, 379 (9829) :1887-1892
[6]   Prediction of Major Pulmonary Complications After Esophagectomy [J].
Ferguson, Mark K. ;
Celauro, Amy D. ;
Prachand, Vivek .
ANNALS OF THORACIC SURGERY, 2011, 91 (05) :1494-1500
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[9]   Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines [J].
Huang, Shih-Cheng ;
Pareek, Anuj ;
Seyyedi, Saeed ;
Banerjee, Imon ;
Lungren, Matthew P. .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[10]   A novel nomogram predicting the risk of postoperative pneumonia for esophageal cancer patients after minimally invasive esophagectomy [J].
Jin, Donghui ;
Yuan, Ligong ;
Li, Feng ;
Wang, Shuaibo ;
Mao, Yousheng .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2022, 36 (11) :8144-8153