Simulating Z2 lattice gauge theory on a quantum computer

被引:18
作者
Charles, Clement [1 ,2 ]
Gustafson, Erik J. [3 ,4 ,5 ]
Hardt, Elizabeth [6 ,7 ]
Herren, Florian [3 ]
Hogan, Norman [8 ]
Lamm, Henry [3 ]
Starecheski, Sara [9 ,10 ]
Van de Water, Roth S. [3 ]
Wagman, Michael L. [3 ]
机构
[1] Univ West Indies, Dept Phys, St Augustine Campus, St Augustine, Trinidad Tobago
[2] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[3] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[4] NASA, Quantum Artificial Intelligence Lab QHAIL, Ames Res Ctr, Moffett Field, CA 94035 USA
[5] USRA Res Inst Adv Comp Sci RIACS, Mountain View, CA 94043 USA
[6] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[7] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[8] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[9] Sarah Lawrence Coll, Dept Phys, Bronxville, NY 10708 USA
[10] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家航空航天局;
关键词
EIGENSOLVER;
D O I
10.1103/PhysRevE.109.015307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The utility of quantum computers for simulating lattice gauge theories is currently limited by the noisiness of the physical hardware. Various quantum error mitigation strategies exist to reduce the statistical and systematic uncertainties in quantum simulations via improved algorithms and analysis strategies. We perform quantum simulations of Z(2) gauge theory with matter to study the efficacy and interplay of different error mitigation methods: readout error mitigation, randomized compiling, rescaling, and dynamical decoupling. We compute Minkowski correlation functions in this confining gauge theory and extract the mass of the lightest spin-1 state from fits to their time dependence. Quantum error mitigation extends the range of times over which our correlation function calculations are accurate by a factor of 6 and is therefore essential for obtaining reliable masses.
引用
收藏
页数:19
相关论文
共 198 条
[1]   Implementation of XY entangling gates with a single calibrated pulse [J].
Abrams, Deanna M. ;
Didier, Nicolas ;
Johnson, Blake R. ;
da Silva, Marcus P. ;
Ryan, Colm A. .
NATURE ELECTRONICS, 2020, 3 (12) :744-+
[2]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[3]   Primitive quantum gates for dihedral gauge theories [J].
Alam, M. Sohaib ;
Hadfield, Stuart ;
Lamm, Henry ;
Li, Andy C. Y. .
PHYSICAL REVIEW D, 2022, 105 (11)
[4]  
Alexandrou C., 2022, POS LATTICE2021, V243
[5]   Monte Carlo Study of Real Time Dynamics on the Lattice [J].
Alexandru, Andrei ;
Basar, Gokce ;
Bedaque, Paulo F. ;
Vartak, Sohan ;
Warrington, Neill C. .
PHYSICAL REVIEW LETTERS, 2016, 117 (08)
[6]  
Ruso LA, 2022, Arxiv, DOI arXiv:2203.09030
[7]  
[Anonymous], 2021, The IBM Quantum Development Roadmap
[8]  
[Anonymous], 2021, Qiskit Runtime
[9]  
[Anonymous], 2020, SCALING IONQS QUANTU
[10]  
[Anonymous], 1997, Bootstrap Methods and their Application, Cambridge Series in Statistical and Probabilistic Mathematics