TiFLCS-MARP: Client selection and model pricing for federated learning in data markets

被引:2
作者
Sun, Yongjiao [1 ]
Li, Boyang [2 ,5 ,6 ]
Yang, Kai [1 ]
Bi, Xin [3 ]
Zhao, Xiangning [4 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci Technol, Beijing 100081, Peoples R China
[3] Northeastern Univ, Key Lab Minist Educ Safe Min Deep Met Mines, Shenyang 110819, Peoples R China
[4] Tiangong Univ, Tianjin 300387, Peoples R China
[5] BIT, Tangshan Res Inst, Tangshan 063000, Peoples R China
[6] Hebei Prov Key Lab Big Data Sci & Intelligent Tech, Tangshan 300401, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Federated learning; Deep learning; Client selection; Game theory; Nash equilibrium; NETWORKS; DESIGN;
D O I
10.1016/j.eswa.2023.123071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the burgeoning data market has witnessed a surge in data exchange, playing a pivotal role in augmenting the predictive and decision -making capabilities of machine learning. Despite these advancements, persistent concerns surrounding data privacy have resulted in stringent limitations on data sharing and trading. Consequently, the data market is undergoing a transformative shift from pricing individual datasets to pricing the models themselves. The challenge of training high-performance machine learning models with restricted data from a single client is substantial. Federated learning has emerged as a popular solution, allowing collaborative model training without the need to transfer client data beyond local environments. However, training federated models within a data market introduces several challenges, including the effective selection of clients for model training and the optimization of utility through model pricing. In response to these challenges, we propose the Tiered Federated Learning Client Selection Algorithm (TiFLCS-MAR), employing a multi -attribute reverse auction approach. Integrated into the federated learning framework, TiFLCS-MAR excels at the comprehensive evaluation of client attributes, employing a tiered strategy to mitigate issues arising from client heterogeneity. Additionally, we introduce the TiFLCS-MAR Pricing Framework (TiFLCSMARP), leveraging Nash equilibrium principles to maximize profitability for both clients and servers. Our framework accommodates the heterogeneity of diverse clients, efficiently selecting suitable candidates from a large pool, thereby boosting training efficiency and curbing model pricing costs. Empirical evidence showcases the efficacy of federated training with TiFLCS-MAR, demonstrating nearly double the convergence speed and a 5-10 percentage point improvement in accuracy across real and synthetic datasets. Furthermore, when compared to three baseline algorithms, TiFLCS-MARP substantially increases central server revenue by factors of 1.99, 27.05, and 1.78, highlighting its superior performance in the data market context.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] FedBoost: Bayesian Estimation Based Client Selection for Federated Learning
    Sheng, Yuhang
    Zeng, Lingguo
    Cao, Shuqin
    Dai, Qing
    Yang, Shasha
    Lu, Jianfeng
    IEEE ACCESS, 2024, 12 : 52255 - 52266
  • [42] Client Selection Based on Label Quantity Information for Federated Learning
    Ma, Jiahua
    Sun, Xinghua
    Xia, Wenchao
    Wang, Xijun
    Chen, Xiang
    Zhu, Hongbo
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [43] Data Distribution-Aware Online Client Selection Algorithm for Federated Learning in Heterogeneous Networks
    Lee, Jaewook
    Ko, Haneul
    Seo, Sangwon
    Pack, Sangheon
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 1127 - 1136
  • [44] Energy-efficient client selection in federated learning with heterogeneous data on edge
    Zhao, Jianxin
    Feng, Yanhao
    Chang, Xinyu
    Liu, Chi Harold
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2022, 15 (02) : 1139 - 1151
  • [45] Energy-efficient client selection in federated learning with heterogeneous data on edge
    Jianxin Zhao
    Yanhao Feng
    Xinyu Chang
    Chi Harold Liu
    Peer-to-Peer Networking and Applications, 2022, 15 : 1139 - 1151
  • [46] Delay-Constrained Client Selection for Heterogeneous Federated Learning in Intelligent Transportation Systems
    Zhang, Weiwen
    Chen, Yanxi
    Jiang, Yifeng
    Liu, Jianqi
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (01): : 1042 - 1054
  • [47] Enhancing Federated Learning With Server-Side Unlabeled Data by Adaptive Client and Data Selection
    Xu, Yang
    Wang, Lun
    Xu, Hongli
    Liu, Jianchun
    Wang, Zhiyuan
    Huang, Liusheng
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (04) : 2813 - 2831
  • [48] Green Federated Learning via Energy-Aware Client Selection
    Albelaihi, Rana
    Yu, Liangkun
    Craft, Warren D.
    Sun, Xiang
    Wang, Chonggang
    Gazda, Robert
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 13 - 18
  • [49] GraphCS: Graph-based client selection for heterogeneity in federated learning
    Chang, Tao
    Li, Li
    Wu, MeiHan
    Yu, Wei
    Wang, Xiaodong
    Xu, ChengZhong
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2023, 177 : 131 - 143
  • [50] AMFL: Asynchronous Multi-level Federated Learning with Client Selection
    Li, Xuerui
    Zhao, Yangming
    Qiao, Chunming
    2024 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC, 2024,