TiFLCS-MARP: Client selection and model pricing for federated learning in data markets

被引:2
作者
Sun, Yongjiao [1 ]
Li, Boyang [2 ,5 ,6 ]
Yang, Kai [1 ]
Bi, Xin [3 ]
Zhao, Xiangning [4 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci Technol, Beijing 100081, Peoples R China
[3] Northeastern Univ, Key Lab Minist Educ Safe Min Deep Met Mines, Shenyang 110819, Peoples R China
[4] Tiangong Univ, Tianjin 300387, Peoples R China
[5] BIT, Tangshan Res Inst, Tangshan 063000, Peoples R China
[6] Hebei Prov Key Lab Big Data Sci & Intelligent Tech, Tangshan 300401, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Federated learning; Deep learning; Client selection; Game theory; Nash equilibrium; NETWORKS; DESIGN;
D O I
10.1016/j.eswa.2023.123071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the burgeoning data market has witnessed a surge in data exchange, playing a pivotal role in augmenting the predictive and decision -making capabilities of machine learning. Despite these advancements, persistent concerns surrounding data privacy have resulted in stringent limitations on data sharing and trading. Consequently, the data market is undergoing a transformative shift from pricing individual datasets to pricing the models themselves. The challenge of training high-performance machine learning models with restricted data from a single client is substantial. Federated learning has emerged as a popular solution, allowing collaborative model training without the need to transfer client data beyond local environments. However, training federated models within a data market introduces several challenges, including the effective selection of clients for model training and the optimization of utility through model pricing. In response to these challenges, we propose the Tiered Federated Learning Client Selection Algorithm (TiFLCS-MAR), employing a multi -attribute reverse auction approach. Integrated into the federated learning framework, TiFLCS-MAR excels at the comprehensive evaluation of client attributes, employing a tiered strategy to mitigate issues arising from client heterogeneity. Additionally, we introduce the TiFLCS-MAR Pricing Framework (TiFLCSMARP), leveraging Nash equilibrium principles to maximize profitability for both clients and servers. Our framework accommodates the heterogeneity of diverse clients, efficiently selecting suitable candidates from a large pool, thereby boosting training efficiency and curbing model pricing costs. Empirical evidence showcases the efficacy of federated training with TiFLCS-MAR, demonstrating nearly double the convergence speed and a 5-10 percentage point improvement in accuracy across real and synthetic datasets. Furthermore, when compared to three baseline algorithms, TiFLCS-MARP substantially increases central server revenue by factors of 1.99, 27.05, and 1.78, highlighting its superior performance in the data market context.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Client Selection with Bandwidth Allocation in Federated Learning
    Kuang, Junqian
    Yang, Miao
    Zhu, Hongbin
    Qian, Hua
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [32] An Efficient Client Selection for Wireless Federated Learning
    Chen, Jingyi
    Wang, Qiang
    Zhang, Wenqi
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 291 - 296
  • [33] Client Selection for Federated Learning With Label Noise
    Yang, Miao
    Qian, Hua
    Wang, Ximin
    Zhou, Yong
    Zhu, Honghin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2193 - 2197
  • [34] FedECS: Client Selection for Optimizing Computing Energy in Federated Learning
    Han, Shuo
    Zhang, Chenyu
    Wang, Luhan
    Zheng, Wei
    Wen, Xiangming
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [35] Federated learning client selection algorithm based on gradient similarity
    Hu, Lingxi
    Hu, Yuanyuan
    Jiang, Linhua
    Long, Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [36] Adaptive client selection with personalization for communication efficient Federated Learning
    de Souza, Allan M.
    Maciel, Filipe
    da Costa, Joahannes B. D.
    Bittencourt, Luiz F.
    Cerqueira, Eduardo
    Loureiro, Antonio A. F.
    Villas, Leandro A.
    AD HOC NETWORKS, 2024, 157
  • [37] Client Selection Mechanism for Federated Learning Based on Class Imbalance
    Zhang, Linlin
    Lin, Congjie
    Bie, Zhangshuai
    Li, Shuo
    Bi, Xuehua
    Zhao, Kai
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT 1, 2025, 15031 : 266 - 278
  • [38] Federated Learning with Personalized Differential Privacy Combining Client Selection
    Xie, Yunting
    Zhang, Lan
    2022 8TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS, BIGCOM, 2022, : 79 - 87
  • [39] Towards Instant Clustering Approach for Federated Learning Client Selection
    Arisdakessian, Sarhad
    Wahab, Omar Abdel
    Mourad, Azzam
    Otrok, Hadi
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 409 - 413
  • [40] Review on Research Trends of Optimization for Client Selection in Federated Learning
    Kim, Jaemin
    Song, Chihyun
    Paek, Jeongyeup
    Kwon, Jung-Hyok
    Cho, Sungrae
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 287 - 289