TiFLCS-MARP: Client selection and model pricing for federated learning in data markets

被引:2
作者
Sun, Yongjiao [1 ]
Li, Boyang [2 ,5 ,6 ]
Yang, Kai [1 ]
Bi, Xin [3 ]
Zhao, Xiangning [4 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci Technol, Beijing 100081, Peoples R China
[3] Northeastern Univ, Key Lab Minist Educ Safe Min Deep Met Mines, Shenyang 110819, Peoples R China
[4] Tiangong Univ, Tianjin 300387, Peoples R China
[5] BIT, Tangshan Res Inst, Tangshan 063000, Peoples R China
[6] Hebei Prov Key Lab Big Data Sci & Intelligent Tech, Tangshan 300401, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Federated learning; Deep learning; Client selection; Game theory; Nash equilibrium; NETWORKS; DESIGN;
D O I
10.1016/j.eswa.2023.123071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the burgeoning data market has witnessed a surge in data exchange, playing a pivotal role in augmenting the predictive and decision -making capabilities of machine learning. Despite these advancements, persistent concerns surrounding data privacy have resulted in stringent limitations on data sharing and trading. Consequently, the data market is undergoing a transformative shift from pricing individual datasets to pricing the models themselves. The challenge of training high-performance machine learning models with restricted data from a single client is substantial. Federated learning has emerged as a popular solution, allowing collaborative model training without the need to transfer client data beyond local environments. However, training federated models within a data market introduces several challenges, including the effective selection of clients for model training and the optimization of utility through model pricing. In response to these challenges, we propose the Tiered Federated Learning Client Selection Algorithm (TiFLCS-MAR), employing a multi -attribute reverse auction approach. Integrated into the federated learning framework, TiFLCS-MAR excels at the comprehensive evaluation of client attributes, employing a tiered strategy to mitigate issues arising from client heterogeneity. Additionally, we introduce the TiFLCS-MAR Pricing Framework (TiFLCSMARP), leveraging Nash equilibrium principles to maximize profitability for both clients and servers. Our framework accommodates the heterogeneity of diverse clients, efficiently selecting suitable candidates from a large pool, thereby boosting training efficiency and curbing model pricing costs. Empirical evidence showcases the efficacy of federated training with TiFLCS-MAR, demonstrating nearly double the convergence speed and a 5-10 percentage point improvement in accuracy across real and synthetic datasets. Furthermore, when compared to three baseline algorithms, TiFLCS-MARP substantially increases central server revenue by factors of 1.99, 27.05, and 1.78, highlighting its superior performance in the data market context.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Federated learning energy saving through client selection
    Maciel, Filipe
    de Souza, Allan M.
    Bittencourt, Luiz F.
    Villas, Leandro A.
    Braun, Torsten
    PERVASIVE AND MOBILE COMPUTING, 2024, 103
  • [22] A Systematic Literature Review on Client Selection in Federated Learning
    Smestad, Carl
    Li, Jingyue
    27TH INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, EASE 2023, 2023, : 2 - 11
  • [23] A Robust Client Selection Mechanism for Federated Learning Environments
    Veiga, Rafael
    Sousa, John
    Morais, Renan
    Bastos, Lucas
    Lobato, Wellington
    Rosário, Denis
    Cerqueira, Eduardo
    Journal of the Brazilian Computer Society, 30 (01): : 444 - 455
  • [24] Client Selection in Federated Learning under Imperfections in Environment
    Rai, Sumit
    Kumari, Arti
    Prasad, Dilip K.
    AI, 2022, 3 (01) : 124 - 145
  • [25] Scout:An Efficient Federated Learning Client Selection Algorithm Driven by Heterogeneous Data and Resource
    Zhang, Ruilin
    Xu, Zhenan
    Yin, Hao
    2023 IEEE INTERNATIONAL CONFERENCE ON JOINT CLOUD COMPUTING, JCC, 2023, : 46 - 49
  • [26] Client Selection for Federated Learning With Non-IID Data in Mobile Edge Computing
    Zhang, Wenyu
    Wang, Xiumin
    Zhou, Pan
    Wu, Weiwei
    Zhang, Xinglin
    IEEE ACCESS, 2021, 9 : 24462 - 24474
  • [27] Pre-Training Model and Client Selection Optimization for Improving Federated Learning Efficiency
    Ge, Bingchen
    Zhou, Ying
    Xie, Liping
    Kou, Lirong
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 650 - 660
  • [28] Client Selection Method for Federated Learning Based on Grouping Reinforcement Learning
    Li, Guo-ming
    Liu, Wai-xi
    Guo, Zhen-zheng
    Chen, Dao-xiao
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 327 - 332
  • [29] Client Selection Based on Channel Capacity for Federated Learning Under Wireless Channels
    Yamazaki, Satoshi
    Furuki, Takuma
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 225 - 230
  • [30] MFLCES: Multi-Level Federated Edge Learning Algorithm Based on Client and Edge Server Selection
    Liu, Zhenpeng
    Duan, Sichen
    Wang, Shuo
    Liu, Yi
    Li, Xiaofei
    ELECTRONICS, 2023, 12 (12)