SCALEX: SCALability EXploration of Multi-Agent Reinforcement Learning Agents in Grid-Interactive Efficient Buildings

被引:3
|
作者
Almilaify, Yara [1 ]
Nweye, Kingsley [1 ]
Nagy, Zoltan [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
来源
PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILDINGS, CITIES, AND TRANSPORTATION, BUILDSYS 2023 | 2023年
关键词
energy flexibility; demand response; multi agent system;
D O I
10.1145/3600100.3623749
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Renewable energy transition and decarbonization pose significant challenges for grid-interactive efficient building communities. The optimization of intermittent renewable energy can be achieved using advanced control architecture and energy storage, enhancing energy flexibility. Reinforcement learning (RL) offers potential solutions, but its scalability and computational demands in large-scale settings remain unclear. This paper examines the scalability of Soft-Actor Critic (SAC) in multi-agent systems, comparing decentralized-independent SACs and centralized SACs using CityLearn, an OpenAI Gym environment. We consider neighborhoods consisting of 2 to 64 single-family residential buildings, each equipped with cooling and heating storage devices, domestic hot water storage devices, electrical storage devices, and solar PV systems. Our findings suggest that independent controllers outperform the centralized controller with increasing number of buildings. We also show that the performance on the building level can differ from the aggregated performance.
引用
收藏
页码:261 / 264
页数:4
相关论文
共 50 条
  • [21] Multi-Agent Reinforcement Learning Based Optimal PV-ESS Control In Grid
    Park, Jaemin
    Kwon, Taehyeon
    Kim, Bongseok
    Hwang, Yujeong
    Sim, Min Kyu
    2023 IEEE IAS GLOBAL CONFERENCE ON RENEWABLE ENERGY AND HYDROGEN TECHNOLOGIES, GLOBCONHT, 2023,
  • [22] Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid
    Park, Keonwoo
    Moon, Ilkyeong
    APPLIED ENERGY, 2022, 328
  • [23] A Review of Multi-Agent Reinforcement Learning Algorithms
    Liang, Jiaxin
    Miao, Haotian
    Li, Kai
    Tan, Jianheng
    Wang, Xi
    Luo, Rui
    Jiang, Yueqiu
    ELECTRONICS, 2025, 14 (04):
  • [24] A Contrastive-Enhanced Ensemble Framework for Efficient Multi-Agent Reinforcement Learning
    Du, Xinqi
    Chen, Hechang
    Xing, Yongheng
    Yu, Philip S.
    He, Lifang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [25] SCM network with multi-agent reinforcement learning
    Zhao, Gang
    Sun, Ruoying
    FIFTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, VOLS 1-3, 2006, : 1294 - 1300
  • [26] Sample-Efficient Multi-Agent Reinforcement Learning with Demonstrations for Flocking Control
    Qiu, Yunbo
    Zhan, Yuzhu
    Jin, Yue
    Wang, Jian
    Zhang, Xudong
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [27] Reinforcement learning of multi-agent communicative acts
    Hoet S.
    Sabouret N.
    Revue d'Intelligence Artificielle, 2010, 24 (02) : 159 - 188
  • [28] Coach-assisted multi-agent reinforcement learning framework for unexpected crashed agents
    ZHAO, Jian
    ZHAO, Youpeng
    WANG, Weixun
    YANG, Mingyu
    HU, Xunhan
    ZHOU, Wengang
    HAO, Jianye
    LI, Houqiang
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (07) : 1032 - 1042
  • [29] Cooperative Multi-Agent Reinforcement Learning With Approximate Model Learning
    Park, Young Joon
    Lee, Young Jae
    Kim, Seoung Bum
    IEEE ACCESS, 2020, 8 : 125389 - 125400
  • [30] Rationality of reward sharing in multi-agent reinforcement learning
    Kazuteru Miyazaki
    Shigenobu Kobayashi
    New Generation Computing, 2001, 19 : 157 - 172