Effective field theory bootstrap, large-N χPT and holographic QCD

被引:10
作者
Li, Yue-Zhou [1 ,2 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] McGill Univ, Dept Phys, Rue Univ 3600, Montreal, PQ H3A 2T8, Canada
基金
美国国家科学基金会;
关键词
Chiral Lagrangian; Effective Field Theories; 1/N Expansion; Gauge-Gravity Correspondence; PERTURBATION-THEORY; SYMMETRY; U(1); MASS;
D O I
10.1007/JHEP01(2024)072
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We review the effective field theory (EFT) bootstrap by formulating it as an infinite-dimensional semidefinite program (SDP), built from the crossing symmetric sum rules and the S-matrix primal ansatz. We apply the program to study the large-N chiral perturbation theory (chi PT) and observe excellent convergence of EFT bounds between the dual (rule-out) and primal (rule-in) methods. This convergence aligns with the predictions of duality theory in SDP, enabling us to analyze the bound states and resonances in the ultra-violet (UV) spectrum. Furthermore, we incorporate the upper bound of unitarity to uniformly constrain the EFT space from the UV scale M using the primal method, thereby confirming the consistency of the large-N expansion. In the end, we translate the large-N chi PT bounds to constrain the higher derivative corrections of holographic QCD models.
引用
收藏
页数:52
相关论文
共 49 条
[41]   Two-leg SU(2n) spin ladder: A low-energy effective field theory approach [J].
Lecheminant, P. ;
Tsvelik, A. M. .
PHYSICAL REVIEW B, 2015, 91 (17)
[42]   Large-Nc and renormalization group constraints on parity-violating low-energy coefficients for three-derivative operators in pionless effective field theory [J].
Nguyen, Son T. ;
Schindler, Matthias R. ;
Springer, Roxanne P. ;
Vanasse, Jared .
PHYSICAL REVIEW C, 2021, 103 (05)
[43]   Holographic boundary conformal field theory with TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation [J].
Zhi Wang ;
Feiyu Deng .
Journal of High Energy Physics, 2025 (1)
[44]   Holographic Wilson loops in symmetric representations in N=2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = {2}^{\ast } $$\end{document} super-Yang-Mills theory [J].
Xinyi Chen-Lin ;
Amit Dekel ;
Konstantin Zarembo .
Journal of High Energy Physics, 2016 (2)
[45]   Field theory aspects of non-Abelian T-duality and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} =2 linear quivers [J].
Yolanda Lozano ;
Carlos Núñez .
Journal of High Energy Physics, 2016 (5)
[46]   Signals of a new phase in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 gauge theory with a magnetic field on the three-sphere [J].
Suphakorn Chunlen ;
Kasper Peeters ;
Pichet Vanichchapongjaroen ;
Marija Zamaklar .
Journal of High Energy Physics, 2014 (9)
[47]   Kaluza-Klein fermion mass matrices from exceptional field theory and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 spectra [J].
Mattia Cesàro ;
Oscar Varela .
Journal of High Energy Physics, 2021 (3)