Advances in breast cancer risk modeling: integrating clinics, imaging, pathology and artificial intelligence for personalized risk assessment

被引:9
|
作者
Pesapane, Filippo [1 ]
Battaglia, Ottavia [2 ]
Pellegrino, Giuseppe [2 ]
Mangione, Elisa [3 ,4 ]
Petitto, Salvatore [5 ]
Del Fiol Manna, Eliza [6 ]
Cazzaniga, Laura [6 ,7 ]
Nicosia, Luca [1 ]
Lazzeroni, Matteo [6 ]
Corso, Giovanni [5 ,8 ,9 ]
Fusco, Nicola [3 ,8 ]
Cassano, Enrico [1 ]
机构
[1] IEO European Inst Oncol IRCCS, Breast Imaging Div, I-20141 Milan, Italy
[2] Univ Milan, Postgrad Sch Radiodiagnost, I-20141 Milan, Italy
[3] IEO European Inst Oncol IRCCS, Div Pathol, I-20141 Milan, Italy
[4] Univ Milan, Sch Pathol, I-20141 Milan, Italy
[5] IEO European Inst Oncol, Div Breast Surg, IRCCS, I-20141 Milan, Italy
[6] IEO European Inst Oncol IRCCS, Div Canc Prevent & Genet, I-20141 Milan, Italy
[7] Univ Milan, Dept Hlth Sci, Med Genet, I-20142 Milan, Italy
[8] Univ Milan, Dept Oncol & Hematooncol, I-20141 Milan, Italy
[9] European Canc Prevent Org ECP, I-20141 Milan, Italy
关键词
breast; imaging; pathology; risk factors; screening; women's health; CARCINOMA IN-SITU; ASSOCIATION; VARIANTS; RECLASSIFICATION; MAMMOGRAPHY; BIOMARKERS; GUIDELINES; GENETICS; NOMOGRAM; MUTATION;
D O I
10.2217/fon-2023-0365
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence (AI) in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes.
引用
收藏
页码:2547 / 2564
页数:18
相关论文
共 50 条
  • [31] Artificial Intelligence (AI) and periodontal risk assessment
    Santana, Luis Carlos Leal
    ORAL DISEASES, 2024, 30 (05) : 3504 - 3505
  • [32] Integrating imaging doses in RT dosimetry for secondary cancer risk assessment
    Romero-Exposito, Maite
    Sanchez-Nieto, Beatriz
    Riveira-Martin, Mercedes
    Hernandez-Sanchez, Jessica
    Zelada, Gabriel
    Azizi, Mona
    Lopez-Medina, Antonio
    Toma-Dasu, Iuliana
    Dasu, Alexandru
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S3222 - S3223
  • [33] Robust artificial intelligence-powered imaging biomarker based on mammography for risk prediction of breast cancer.
    Park, Eun Kyung
    Lee, Hyeonsoo
    Kim, Minjeong
    Kim, Ki Hwan
    Nam, Hyeonseob
    Chang, Yoosoo
    Ryu, Seungho
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [34] Artificial intelligence to optimize the accuracy and predictiveness of breast cancer pathology
    Beck, A.
    CANCER RESEARCH, 2019, 79 (04)
  • [35] Advances in Digital Pathology: From Artificial Intelligence to Label-Free Imaging
    Grosserueschkamp, Frederik
    Juette, Hendrik
    Gerwert, Klaus
    Tannapfel, Andrea
    VISCERAL MEDICINE, 2021, : 482 - 490
  • [36] Artificial intelligence improves mammography-based breast cancer risk prediction
    Ingman, Wendy V.
    Britt, Kara L.
    Stone, Jennifer
    Nguyen, Tuong L.
    Hopper, John L.
    Thompson, Erik W.
    TRENDS IN CANCER, 2025, 11 (03) : 188 - 191
  • [37] Beyond the AJR: Validation of an Artificial Intelligence Breast Cancer Risk Assessment Model Across Diverse International Cohorts
    Mullen, Lisa A.
    Ambinder, Emily B.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2022, 219 (03) : 524 - 524
  • [38] Mammographic Density for Personalized Breast Cancer Risk
    Kataoka, Masako
    RADIOLOGY, 2023, 306 (02)
  • [39] ARTIFICIAL INTELLIGENCE IN GLIOMA PATHOLOGY IMAGE ANALYSIS FOR RISK PREDICTION
    Chunduru, Pranathi
    Phillips, Joanna
    Molinaro, Annette
    NEURO-ONCOLOGY, 2020, 22 : 171 - 171
  • [40] Heart Failure and Breast Cancer Therapies: Moving Towards Personalized Risk Assessment
    Francis, Sanjeev A.
    Cheng, Susan
    Arteaga, Carlos L.
    Moslehi, Javid
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2014, 3 (01):