DASA: Domain Adaptation via Saliency Augmentation

被引:0
|
作者
Patlan, Atharv Singh [1 ]
Jerripothula, Koteswar Rao [2 ]
机构
[1] Indian Inst Technol Kanpur IIT Kanpur, Dept Comp Sci & Engn, Kanpur, Uttar Pradesh, India
[2] Indraprastha Inst Informat Technol Delhi IIIT Del, Dept Comp Sci & Engn, New Delhi, India
来源
2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP | 2023年
关键词
domain adaptation; saliency; data augmentation; classification; foreground;
D O I
10.1109/MMSP59012.2023.10337727
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper aims for supervised domain adaptation of image classifiers via saliency augmentation. The idea is to utilize domain-independent saliency extraction to enrich source and target domains and bring them closer. We then align their lower-order statistics to solve the problem. Because saliency augmentation suppresses uncommon background features across the domains, only the foreground features get aligned, as one would desire in the domain adaptation of image classifiers. Exploring this new direction of saliency augmentation for domain adaptation makes our work novel and promising. Despite providing far fewer labeled data in the target domain than in the source domain, our extensive experiments comprehensively demonstrate our method's commendable effectiveness and accuracy.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Unsupervised urban scene segmentation via domain adaptation
    Gao, Lianli
    Zhang, Yiyue
    Zou, Fuhao
    Shao, Jie
    Lai, Junyu
    NEUROCOMPUTING, 2020, 406 : 295 - 301
  • [42] Cross-Language Speech Emotion Recognition Using Bag-of-Word Representations, Domain Adaptation, and Data Augmentation
    Kshirsagar, Shruti
    Falk, Tiago H.
    SENSORS, 2022, 22 (17)
  • [43] Domain Adaptation via Feature Disentanglement for cross-domain image classification
    Wu, Zhi-Ze
    Du, Chang-Jiang
    Wang, Xin-Qi
    Zou, Le
    Cheng, Fan
    Li, Teng
    Nian, Fu-Dong
    Weise, Thomas
    Wang, Xiao-Feng
    APPLIED SOFT COMPUTING, 2025, 172
  • [44] Joint Domain Matching and Classification for cross-domain adaptation via ELM
    Chen, Chao
    Jiang, Buyuan
    Cheng, Zhaowei
    Jin, Xinyu
    NEUROCOMPUTING, 2019, 349 : 314 - 325
  • [45] Domain Adaptation in the Absence of Source Domain Data
    Chidlovskii, Boris
    Clinchant, Stephane
    Csurka, Gabriela
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 451 - 460
  • [46] Inter-Domain Adaptation Label for Data Augmentation in Vehicle Re-Identification
    Wang, Qi
    Min, Weidong
    Han, Qing
    Liu, Qian
    Zha, Cheng
    Zhao, Haoyu
    Wei, Zitai
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1031 - 1041
  • [47] Source-free semi-supervised domain adaptation via progressive Mixup
    Ma, Ning
    Wang, Haishuai
    Zhang, Zhen
    Zhou, Sheng
    Chen, Hongyang
    Bu, Jiajun
    KNOWLEDGE-BASED SYSTEMS, 2023, 262
  • [48] Linear Discriminant Analysis via Pseudo Labels: A Unified Framework for Visual Domain Adaptation
    Sanodiya, Rakesh Kumar
    Yao, Leehter
    IEEE ACCESS, 2020, 8 : 200073 - 200090
  • [49] DADRnet: Cross-domain image dehazing via domain adaptation and disentangled representation
    Li, Xiaopeng
    Yu, Hu
    Zhao, Chen
    Fan, Cien
    Zou, Lian
    NEUROCOMPUTING, 2023, 544
  • [50] Domain Adaptation with Nonparametric Projections
    Vural, Elif
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,