DASA: Domain Adaptation via Saliency Augmentation

被引:0
|
作者
Patlan, Atharv Singh [1 ]
Jerripothula, Koteswar Rao [2 ]
机构
[1] Indian Inst Technol Kanpur IIT Kanpur, Dept Comp Sci & Engn, Kanpur, Uttar Pradesh, India
[2] Indraprastha Inst Informat Technol Delhi IIIT Del, Dept Comp Sci & Engn, New Delhi, India
来源
2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP | 2023年
关键词
domain adaptation; saliency; data augmentation; classification; foreground;
D O I
10.1109/MMSP59012.2023.10337727
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper aims for supervised domain adaptation of image classifiers via saliency augmentation. The idea is to utilize domain-independent saliency extraction to enrich source and target domains and bring them closer. We then align their lower-order statistics to solve the problem. Because saliency augmentation suppresses uncommon background features across the domains, only the foreground features get aligned, as one would desire in the domain adaptation of image classifiers. Exploring this new direction of saliency augmentation for domain adaptation makes our work novel and promising. Despite providing far fewer labeled data in the target domain than in the source domain, our extensive experiments comprehensively demonstrate our method's commendable effectiveness and accuracy.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Subdomain adaptation via correlation alignment with entropy minimization for unsupervised domain adaptation
    Gilo, Obsa
    Mathew, Jimson
    Mondal, Samrat
    Sandoniya, Rakesh Kumar
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)
  • [32] Unsupervised Domain Adaptation via Stacked Convolutional Autoencoder
    Zhu, Yi
    Zhou, Xinke
    Wu, Xindong
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [33] Domain Adaptation of Echocardiography Segmentation Via Reinforcement Learning
    Judge, Arnaud
    Judge, Thierry
    Duchateau, Nicolas
    Sandler, Roman A.
    Sokol, Joseph Z.
    Bernard, Olivier
    Jodoin, Pierre-Marc
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IX, 2024, 15009 : 235 - 244
  • [34] Unsupervised domain adaptation via optimal prototypes transport
    Xu, Xiao-Lin
    Ren, Chuan-Xian
    Yan, Hong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 272
  • [35] DICTIONARY TRANSFER FOR IMAGE DENOISING VIA DOMAIN ADAPTATION
    Chen, Gang
    Xiong, Caiming
    Corso, Jason J.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1189 - 1192
  • [36] Deep domain adaptation via joint transfer networks
    Zhang, Changchun
    Zhao, Qingjie
    Wu, Heng
    NEUROCOMPUTING, 2022, 489 : 441 - 448
  • [37] Generation, augmentation, and alignment: a pseudo-source domain based method for source-free domain adaptation
    Yuntao Du
    Haiyang Yang
    Mingcai Chen
    Hongtao Luo
    Juan Jiang
    Yi Xin
    Chongjun Wang
    Machine Learning, 2024, 113 : 3611 - 3631
  • [38] Generation, augmentation, and alignment: a pseudo-source domain based method for source-free domain adaptation
    Du, Yuntao
    Yang, Haiyang
    Chen, Mingcai
    Luo, Hongtao
    Jiang, Juan
    Xin, Yi
    Wang, Chongjun
    MACHINE LEARNING, 2024, 113 (06) : 3611 - 3631
  • [39] Domain Adaptation in Physical Systems via Graph Kernel
    Li, Haoran
    Tong, Hanghang
    Weng, Yang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 868 - 876
  • [40] Domain adaptation via incremental confidence samples into classification
    Teng, Shaohua
    Zheng, Zefeng
    Wu, Naiqi
    Fei, Lunke
    Zhang, Wei
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (01) : 365 - 385