Human-in-the-Loop Automatic Program Repair

被引:1
|
作者
Geethal, Charaka [1 ,2 ]
Bohme, Marcel [3 ]
Pham, Van-Thuan [4 ]
机构
[1] Monash Univ, Clayton, Vic 3800, Australia
[2] Univ Ruhuna, Fac Sci, Dept Comp Sci, Matara 81000, Sri Lanka
[3] Max Planck Inst Secur & Privacy, D-44799 Bochum, Germany
[4] Univ Melbourne, Carlton, Vic 3053, Australia
关键词
Automated test oracles; semi-automatic program repair; classification algorithms; active machine learning; GENERATION;
D O I
10.1109/TSE.2023.3305052
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
learn2fix is a human-in-the-loop interactive program repair technique, which can be applied when no bug oracle-except the user who is reporting the bug-is available. This approach incrementally learns the condition under which the bug is observed by systematic negotiation with the user. In this process, learn2fix generates alternative test inputs and sends some of those to the user for obtaining their labels. A limited query budget is assigned to the user for this task. A query is a Yes/No question: "When executing this alternative test input, the program under test produces the following output; is the bug observed?". Using the labelled test inputs, learn2fix incrementally learns an automatic bug oracle to predict the user's response. A classification algorithm in machine learning is used for this task. Our key challenge is to maximise the oracle's accuracy in predicting the tests that expose the bug given a practical, small budget of queries. After learning the automatic oracle, an existing program repair tool attempts to repair the bug using the alternative tests that the user has labelled. Our experiments demonstrate that learn2fix trains a sufficiently accurate automatic oracle with a reasonably low labelling effort (lt. 20 queries), and the oracles represented by interpolation-based classifiers produce more accurate predictions than those represented by approximation-based classifiers. Given the user-labelled test inputs, generated using the interpolation-based approach, the GenProg and Angelix automatic program repair tools produce patches that pass a much larger proportion of validation tests than the manually constructed test suites provided by the repair benchmark.
引用
收藏
页码:4526 / 4549
页数:24
相关论文
共 50 条
  • [31] Semi-automatic Framework for Voxel Human Deformation Modeling
    Gao, Yangchun
    Xu, Xu
    Li, Congsheng
    Liu, Jie
    Wu, Tongning
    CURRENT MEDICAL IMAGING, 2024, 20
  • [32] Semi-automatic Framework for Voxel Human Deformation Modeling
    Gao, Yangchun
    Xu, Xu
    Li, Congsheng
    Liu, Jie
    Wu, Tongning
    CURRENT MEDICAL IMAGING, 2024, 20
  • [33] A biologically inspired repair mechanism for neuronal reconstructions with a focus on human dendrites
    Groden, Moritz
    Moessinger, Hannah M.
    Schaffran, Barbara
    Defelipe, Javier
    Benavides-Piccione, Ruth
    Cuntz, Hermann
    Jedlicka, Peter
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)
  • [34] Blood Milieu in Acute Myocardial Infarction Reprograms Human Macrophages for Trauma Repair
    Fontaine, Margaux A. C.
    Jin, Han
    Gagliardi, Mick
    Rousch, Mat
    Wijnands, Erwin
    Stoll, Monika
    Li, Xiaofei
    Schurgers, Leon
    Reutelingsperger, Chris
    Schalkwijk, Casper
    van den Akker, Nynke M. S.
    Molin, Daniel G. M.
    Gullestad, Lars
    Eritsland, Jan
    Hoffman, Pavel
    Skjelland, Mona
    Andersen, Geir O.
    Aukrust, Pal
    Karel, Joel
    Smirnov, Evgueni
    Halvorsen, Bente
    Temmerman, Lieve
    Biessen, Erik A. L.
    ADVANCED SCIENCE, 2023, 10 (05)
  • [35] Semi-Automatic Classification and Duplicate Detection From Human Loss News Corpus
    Abid, Adnan
    Ali, Waqas
    Farooq, Muhammad Shoaib
    Farooq, Uzma
    Khan, Nabeel Sabir
    Abid, Kamran
    IEEE ACCESS, 2020, 8 (08): : 97737 - 97747
  • [36] In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells
    Ko, Ji-Yun
    Kim, Kyung-Il
    Park, Siyeon
    Im, Gun-Il
    BIOMATERIALS, 2014, 35 (11) : 3571 - 3581
  • [37] Repair of Acute Myocardial Infarction by Human Stemness Factors Induced Pluripotent Stem Cells
    Nelson, Timothy J.
    Martinez-Fernandez, Almudena
    Yamada, Satsuki
    Perez-Terzic, Carmen
    Ikeda, Yasuhiro
    Terzic, Andre
    CIRCULATION, 2009, 120 (05) : 408 - 416
  • [38] Human pluripotent stem cell-derived organoids repair damaged bowel in vivo
    Poling, Holly M.
    Sundaram, Nambirajan
    Fisher, Garrett W.
    Singh, Akaljot
    Shiley, Joseph R.
    Nattamai, Kalpana
    Govindarajah, Vinothini
    Cortez, Alexander R.
    Krutko, Maksym O.
    Menoret, Severine
    Anegon, Ignacio
    Kasendra, Magdalena
    Wells, James M.
    Mayhew, Christopher N.
    Takebe, Takanori
    Mahe, Maxime M.
    Helmrath, Michael A.
    CELL STEM CELL, 2024, 31 (10)
  • [39] EFFECTIVE REPAIR OF ARTICULAR CARTILAGE USING HUMAN PLURIPOTENT STEM CELL-DERIVED TISSUE
    Gardner, O. F. W.
    Juneja, S. C.
    Whetstone, H.
    Nartiss, Y.
    Sieker, J. T.
    Veillette, C.
    Keller, G. M.
    Craft, A. M.
    EUROPEAN CELLS & MATERIALS, 2019, 38 : 215 - 227
  • [40] Long-Term Engraftment of Human Cardiomyocytes Combined with Biodegradable Microparticles Induces Heart Repair
    Saludas, Laura
    Garbayo, Elisa
    Mazo, Manuel
    Pelacho, Beatriz
    Abizanda, Gloria
    Iglesias-Garcia, Olalla
    Raya, Angel
    Prosper, Felipe
    Blanco-Prieto, Maria J.
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2019, 370 (03): : 761 - 771