ADVANCES IN THE STUDY OF BIOCHEMICAL, MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS OF WHEAT AND SORGHUM CROPS IN AUSTRALIA USING HYPERSPECTRAL DATA AND MACHINE LEARNING

被引:1
作者
Potgieter, A. B. [1 ]
Camino, C. [2 ]
Poblete, T. [3 ,4 ]
Zhi, X. [6 ]
Reynolds-Massey-Reed, S. [5 ]
Zhao, Y. [1 ]
Belwalkar, A.
Ruizhu, J. [1 ]
George-Jaeggli, B. [5 ,7 ]
Chapman, S. [8 ]
Jordan, D. [5 ]
Wu, A. [1 ]
Hammer, G. L. [1 ]
Zarco-Tejada, P. J. [3 ,4 ,9 ]
机构
[1] Univ Queensland, Queensland Alliance Agr & Food Innovat, St Lucia, Qld 4072, Australia
[2] European Commiss, Joint Res Ctr, Via E Fermi 2749 TP 262, I-21027 Ispra, VA, Italy
[3] Univ Melbourne, Fac Engn & Informat Technol FEIT, Melbourne, Vic, Australia
[4] Univ Melbourne, Sch Agr Food & Ecosyst Sci SAFES, Fac Sci, Melbourne, Vic, Australia
[5] Univ Queensland, Queensland Alliance Agr & Food Innovat, Warwick, Qld 4370, Australia
[6] Chinese Acad Agr Sci, State Key Lab Cotton Biol, Inst Cotton Res, Anyang 455000, Henan, Peoples R China
[7] Hermitage Res Facil, Agri Sci Queensland, Dept Agr & Fisheries, Warwick, Qld 4370, Australia
[8] Univ Queensland, Sch Agr & Food Sci, St Lucia, Qld 4072, Australia
[9] CSIC, Inst Agr Sostenible IAS, Cordoba, Spain
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
澳大利亚研究理事会;
关键词
Machine learning; Hyperspectral data; AI; SCOPE; Pro4SAIL; VcMax; SIF; PHOTOSYNTHESIS; FLUORESCENCE; MODEL;
D O I
10.1109/IGARSS52108.2023.10282230
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we discuss the integration of systems such as multi-dimensional radiative transfer models (RTM) with deep learning (DL) algorithms to estimate plant biochemical, physiological, and morphological traits at canopy level using high-resolution hyperspectral imagery (361 bands in the 400-1000 nm spectral range). We applied the approaches to two case studies for dryland cropping in Australia (i.e., wheat and sorghum). Crop type averages for the early flight for leaf area index (LAI) varied between 2, for Canola, to as high as 4.3 for Lentils. Wheat and Barley had LAI of 4.1 and 3.8 (m(2)/m(2)), respectively. Chlorophyll a+b (Ca+b) averages for emerged crops were 18, 41, 44, 51 and 59 mu g/cm(2) for Faba beans, Wheat, Canola, Barley and Oats, respectively. The pigment Anthocyanin varied from 4.9 to 15.9 mu g/cm(2) for Lentils and Canola, respectively. Similar patterns were observed in the Carotenoid (Cx+c) levels (as high as 16.5 mu g/cm(2) for Oats). For sorghum plots, the integrated DL approaches showed significant high correlation in predicting sorghum LAI (R-2 = 0.84, RMSE = 0.65 m(2)/m(2)) and Ca+b (R-2 = 0.94, RMSE = 4.94 mu gcm(-2)). The maximum velocity carboxylation rates (Vcmax) varied between 45-75 mu mol m(-2)s(-1). For both studied periods, we yielded a R-2 > 0.78 and RMSE <= 5.35 mu mol m(-2)s(-1), being the RMSE lower when using the modelled fluorescence emission for retrieving the Vcmax. In addition, we derived the solar induced fluorescence emission hyperspectral narrowband (5.8 nm) sensing and radiative transfer models (RTM).
引用
收藏
页码:1952 / 1955
页数:4
相关论文
共 18 条
[1]  
[Anonymous], 1995, Springer, DOI DOI 10.1007/978-1-4757-2440-0
[2]  
Camino C., REMOTE SENSING UNPUB
[3]   Improving Photosynthesis [J].
Evans, John R. .
PLANT PHYSIOLOGY, 2013, 162 (04) :1780-1793
[4]   PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle [J].
Feret, J. -B. ;
Gitelson, A. A. ;
Noble, S. D. ;
Jacquemoud, S. .
REMOTE SENSING OF ENVIRONMENT, 2017, 193 :204-215
[5]  
Fischer T, 2014, ACIAR MONOGR SER, V158, P1
[6]   Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops [J].
Furbank, Robert T. ;
Jimenez-Berni, Jose A. ;
George-Jaeggli, Barbara ;
Potgieter, Andries B. ;
Deery, David M. .
NEW PHYTOLOGIST, 2019, 223 (04) :1714-1727
[7]  
Maier S., 2001, SUN INDUCED FLUORESC, P90
[8]   Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies [J].
Pinto, Francisco ;
Damm, Alexander ;
Schickling, Anke ;
Panigada, Cinzia ;
Cogliati, Sergio ;
Mueller-Linow, Mark ;
Balvora, Agim ;
Rascher, Uwe .
PLANT CELL AND ENVIRONMENT, 2016, 39 (07) :1500-1512
[9]   Evolution and application of digital technologies to predict crop type and crop phenology in agriculture [J].
Potgieter, Andries B. ;
Zhao, Yan ;
Zarco-Tejada, Pablo J. ;
Chenu, Karine ;
Zhang, Yifan ;
Porker, Kenton ;
Biddulph, Ben ;
Dang, Yash P. ;
Neale, Tim ;
Roosta, Fred ;
Chapman, Scott .
IN SILICO PLANTS, 2021, 3 (01)
[10]   Analysis of Red and Far-Red Sun-Induced Chlorophyll Fluorescence and Their Ratio in Different Canopies Based on Observed and Modeled Data [J].
Rossini, Micol ;
Meroni, Michele ;
Celesti, Marco ;
Cogliati, Sergio ;
Julitta, Tommaso ;
Panigada, Cinzia ;
Rascher, Uwe ;
van der Tol, Christiaan ;
Colombo, Roberto .
REMOTE SENSING, 2016, 8 (05)