GRAPH NEURAL NETWORK WITH MULTI-KERNEL LEARNING FOR MULTISPECTRAL POINT CLOUD CLASSIFICATION

被引:1
作者
Zhang, Zifeng [1 ,2 ]
Wang, Qingwang [1 ,2 ]
Wang, Mingye [1 ,2 ]
Shen, Tao [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Kunming, Yunnan, Peoples R China
[2] Yunnan Key Lab Comp Technol Applicat, Kunming, Yunnan, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
中国国家自然科学基金;
关键词
Multispectral LiDAR data; graph neural network; multi-kernel learning; point cloud classification; LAND-COVER CLASSIFICATION;
D O I
10.1109/IGARSS52108.2023.10282049
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Multispectral point clouds provide the data basis for finer land cover classification due to the simultaneous spatial and spectral information. How to jointly utilize spatial-spectral information becomes a hot research direction. Benefiting from the excellent performance of graph neural networks ( GNNs) on non-Euclidean data, it is well suited to modelling multispectral point clouds to achieve higher classification accuracy. This paper proposes a novel graph convolutional networks with multi-kernel learning (GCN-MKL) for adaptively constructing a graph of multispectral point cloud for finer classification. Specifically, we use multiple base kernels to map the multispectral point cloud into a high-dimensional feature space and learn a linear combination of base kernels through a multi-kernel learning mechanism embedded in the network. The learned multikernel graph can effectively measure the high-dimensional similarity between multispectral points. Experimental results demonstrate that the proposed GCN-MKL outperforms several state-of-the-art methods on a real multispectral point cloud.
引用
收藏
页码:970 / 973
页数:4
相关论文
共 10 条
[1]   TESTING OF LAND COVER CLASSIFICATION FROM MULTISPECTRAL AIRBORNE LASER SCANNING DATA [J].
Bakula, K. ;
Kupidura, P. ;
Jelowicki, L. .
XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7) :161-169
[2]   Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar [J].
Fernandez-Diaz, Juan Carlos ;
Carter, William E. ;
Glennie, Craig ;
Shrestha, Ramesh L. ;
Pan, Zhigang ;
Ekhtari, Nima ;
Singhania, Abhinav ;
Hauser, Darren ;
Sartori, Michael .
REMOTE SENSING, 2016, 8 (11)
[3]   Multispectral LiDAR Point Cloud Classification Using SE-PointNet plus [J].
Jing, Zhuangwei ;
Guan, Haiyan ;
Zhao, Peiran ;
Li, Dilong ;
Yu, Yongtao ;
Zang, Yufu ;
Wang, Hanyun ;
Li, Jonathan .
REMOTE SENSING, 2021, 13 (13)
[4]  
Kipf ThomasN., 2017, Semi-supervised classification with graph convolutional networks
[5]  
LIN YB, 2018, REMOTE SENS, V143, P39, DOI DOI 10.1016/J.ISPRSJPRS.2018.05.004
[6]   Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating [J].
Matikainen, Leena ;
Karila, Kirsi ;
Hyyppa, Juha ;
Litkey, Paula ;
Puttonen, Eetu ;
Ahokas, Eero .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 128 :298-313
[7]  
Velickovic Petar., 2017, STAT, DOI DOI 10.48550/ARXIV.1710.10903
[8]   Multi-attribute smooth graph convolutional network for multispectral points classification [J].
Wang QingWang ;
Gu YanFeng ;
Yang Min ;
Wang Chen .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (11) :2509-2522
[9]   FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation [J].
Yang, Yaoqing ;
Feng, Chen ;
Shen, Yiru ;
Tian, Dong .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :206-215
[10]   A Hybrid Capsule Network for Land Cover Classification Using Multispectral LiDAR Data [J].
Yu, Yongtao ;
Guan, Haiyan ;
Li, Dilong ;
Gu, Tiannan ;
Wang, Lanfang ;
Ma, Lingfei ;
Li, Jonathan .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (07) :1263-1267