Origin of dendrite-free lithium deposition in concentrated electrolytes

被引:133
作者
Chen, Yawei [1 ]
Li, Menghao [2 ,3 ]
Liu, Yue [4 ]
Jie, Yulin [1 ]
Li, Wanxia [1 ]
Huang, Fanyang [1 ]
Li, Xinpeng [1 ]
He, Zixu [1 ]
Ren, Xiaodi [1 ]
Chen, Yunhua [5 ]
Meng, Xianhui [5 ]
Cheng, Tao [4 ]
Gu, Meng [2 ]
Jiao, Shuhong [1 ]
Cao, Ruiguo [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[3] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[4] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
[5] NIO Incorporat, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL BATTERIES; ANODE; CHALLENGES; INTERFACES;
D O I
10.1038/s41467-023-38387-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The electrolyte solvation structure and the solid-electrolyte interphase (SEI) formation are critical to dictate the morphology of lithium deposition in organic electrolytes. However, the link between the electrolyte solvation structure and SEI composition and its implications on lithium morphology evolution are poorly understood. Herein, we use a single-salt and single-solvent model electrolyte system to systematically study the correlation between the electrolyte solvation structure, SEI formation process and lithium deposition morphology. The mechanism of lithium deposition is thoroughly investigated using cryo-electron microscopy characterizations and computational simulations. It is observed that, in the high concentration electrolytes, concentrated Li+ and anion-dominated solvation structure initiate the uniform Li nucleation kinetically and favor the decomposition of anions rather than solvents, resulting in inorganic-rich amorphous SEI with high interface energy, which thermodynamically facilitates the formation of granular Li. On the contrary, solvent-dominated solvation structure in the low concentration electrolytes tends to exacerbate the solvolysis process, forming organic-rich mosaic SEI with low interface energy, which leads to aggregated whisker-like nucleation and growth. These results are helpful to tackle the long-standing question on the origin of lithium dendrite formation and guide the rational design of high-performance electrolytes for advanced lithium metal batteries. The origin of dendrite growth and lithium deposition behavior remains not well understood. Here, authors use a single-salt and single-solvent model electrolyte system to study the correlations between the electrolyte solvation structure, interphase structure and lithium deposition morphology.
引用
收藏
页数:12
相关论文
共 47 条
[1]   A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability [J].
Amanchukwu, Chibueze, V ;
Yu, Zhiao ;
Kong, Xian ;
Qin, Jian ;
Cui, Yi ;
Bao, Zhenan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (16) :7393-7403
[2]   High Energy Density Rechargeable Batteries Based on Li Metal Anodes. The Role of Unique Surface Chemistry Developed in Solutions Containing Fluorinated Organic Co-solvents [J].
Aurbach, Doron ;
Markevich, Elena ;
Salitra, Gregory .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (50) :21161-21176
[3]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[4]   High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Yu, Lu ;
Ren, Xiaodi ;
Engelhard, Mark H. ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Xu, Wu ;
Xiao, Jie ;
Liu, Jun ;
Zhang, Ji-Guang .
JOULE, 2018, 2 (08) :1548-1558
[5]   High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Mei, Donghai ;
Han, Kee Sung ;
Engelhard, Mark H. ;
Zhao, Wengao ;
Xu, Wu ;
Liu, Jun ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2018, 30 (21)
[6]   Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery [J].
Chen, Yuelang ;
Yu, Zhiao ;
Rudnicki, Paul ;
Gong, Huaxin ;
Huang, Zhuojun ;
Kim, Sang Cheol ;
Lai, Jian-Cheng ;
Kong, Xian ;
Qin, Jian ;
Cui, Yi ;
Bao, Zhenan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (44) :18703-18713
[7]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[8]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[9]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890
[10]   Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries [J].
Fan, Xiulin ;
Chen, Long ;
Ji, Xiao ;
Deng, Tao ;
Hou, Singyuk ;
Chen, Ji ;
Zheng, Jing ;
Wang, Fei ;
Jiang, Jianjun ;
Xu, Kang ;
Wang, Chunsheng .
CHEM, 2018, 4 (01) :174-185