Experimental Study on the Formation and Dissociation Characteristics of Mixed CO2 + CH4 Hydrates in Quartz Sand

被引:3
|
作者
Ma, Yue [1 ]
Gao, Qiang [1 ,2 ]
Guan, Jian [1 ]
Zhang, Chi [1 ]
Zhao, Jianzhong [1 ]
机构
[1] Taiyuan Univ Technol, Key Lab Insitu Property Improving Min, Minist Educ, Taiyuan 030024, Peoples R China
[2] China Univ Geosci Wuhan, Fac Engn, Natl Ctr Int Res Deep Earth Drilling & Resource De, Wuhan 430074, Peoples R China
基金
中国博士后科学基金;
关键词
METHANE HYDRATE DISSOCIATION; THERMAL-STIMULATION; GAS-HYDRATE; CARBON-DIOXIDE; RECOVERY; SANDY; DEPRESSURIZATION; DECOMPOSITION; SEDIMENTS; KINETICS;
D O I
10.1021/acs.energyfuels.3c01757
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Naturalgas has been considered as a transiting fossil fuel intothe future low-carbon world, improving air quality and reducing carbonintensity. The efficiency of purifying unconventional gas resourcesand recovering gas from hydrates via a CO2-CH4 exchange has attracted widespread attention in the scientificfields. However, the associated fluid flow, heat transfer, and hydratereaction kinetics involving the mixed gas formation and dissociationare strongly needed in understanding the fundamental thermophysicalproperties. In this study, we designed a series of experiments employingdepressurization and thermal stimulation to dissociate mixed CO2 + CH4 hydrates. We examined the kinetics, fluidproduction behavior, heat transfer characteristics, and separationfactors during the hydrate formation and dissociation processes. Thegas consumption and each phase saturation show a good consistencyin all cases, however, the induction time was stochastic, rangingfrom 38 to 58 min. The separation factors were all less than 1.0,and the hydrate shows a strong selectivity to CH4 duringthe gas mixture hydrate formation process. The gas production increasedwith the decrease of the depressurization pressure. The peak valueof the decomposition rate at 0.5 MPa is 0.2147 mol/min, which is 1.13times that at 1.0 MPa and 13.5 times that at 1.5 MPa. Increasing decompositiontemperature led to the rapid end of hydrate decomposition. The CO2 fraction was larger than that of CH4 during thehydrate dissociation process, and CO2 was easier to escapefrom the hydrate cage structure during the mixed gas hydrate decompositionprocess with decreasing pressure and increasing temperature.
引用
收藏
页码:12934 / 12945
页数:12
相关论文
共 50 条
  • [21] Experimental and Simulation Study for the Dissociation Behavior of Gas Hydrates - Part I: CH4 Hydrates
    Naeiji, Parisa
    Pan, Mengdi
    Luzi-Helbing, Manja
    Alavi, Saman
    Schicks, Judith M.
    ENERGY & FUELS, 2023, 37 (06) : 4484 - 4496
  • [22] Effect of Ion Specificity on Thermodynamic Inhibition of CH4 and CO2 Hydrates: An Experimental and Modeling Study
    Zhou, Ying
    Chen, Zhuo
    Maeda, Nobuo
    Li, Huazhou
    FLUID PHASE EQUILIBRIA, 2025, 589
  • [23] Formation Mechanism of CO2 and CH4 Hydrates in Bubbly Flow in a Horizontal Pipeline
    Fu, Weiqi
    Li, Guoliang
    Ding, Xinlu
    Wang, Jinli
    Liu, Hui
    Huang, Bingxiang
    ENERGY & FUELS, 2023, 37 (24) : 19562 - 19574
  • [24] Experimental Equipment Validation for Methane (CH4) and Carbon Dioxide (CO2) Hydrates
    Khan, Muhammad Saad
    Yaqub, Sana
    Manner, Naathiya
    Karthwathi, Nur Ani
    Qasim, Ali
    Mellon, Nurhayati Binti
    Lal, Bhajan
    3RD INTERNATIONAL CONFERENCE ON SCIENCE, TECHNOLOGY, AND INTERDISCIPLINARY RESEARCH (IC-STAR), 2018, 344
  • [25] May sediments affect the inhibiting properties of NaCl on CH4 and CO2 hydrates formation? an experimental report
    Giovannetti, Rita
    Gambelli, Alberto Maria
    Castellani, Beatrice
    Rossi, Andrea
    Minicucci, Marco
    Zannotti, Marco
    Li, Yan
    Rossi, Federico
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 359
  • [26] Re-definition of the region suitable for CO2/CH4 replacement into hydrates as a function of the thermodynamic difference between CO2 hydrate formation and dissociation
    Gambelli, Alberto Maria
    Rossi, Federico
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 169 : 132 - 141
  • [27] Reformation and replacement of CO2 and CH4 gas hydrates.
    Komai, T
    Kawamura, T
    Yamamoto, Y
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U400 - U400
  • [28] Dynamics of reformation and replacement of CO2 and CH4 gas hydrates
    Komai, T
    Yamamo, Y
    Ohga, K
    GAS HYDRATES: CHALLENGES FOR THE FUTURE, 2000, 912 : 272 - 280
  • [29] Theoretical insights into nucleation of CO2 and CH4 hydrates for CO2 capture and storage
    Wang, Xin
    Sang, David K.
    Chen, Jian
    Mi, Jianguo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (48) : 26929 - 26937
  • [30] Molecular Insights into the Nucleation and Growth of CH4 and CO2 Mixed Hydrates from Microsecond Simulations
    He, Zhongjin
    Gupta, Krishna M.
    Linga, Praveen
    Jiang, Jianwen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (44): : 25225 - 25236